
Feng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/879612/publications.pdf Version: 2024-02-01

FENC HE

#	Article	IF	CITATIONS
1	Effect of Ti/Al Ratio on the Elemental Partitioning in the Face-Centered Cubic-Based γ-γ′ Dual-Phase High Entropy Alloy Studied by Atom Probe Tomography. Frontiers in Materials, 2022, 9, .	2.4	0
2	Tailoring microstructures of CoCrFeNiNb0.25 hypoeutectic high-entropy alloy by hot deformation. Rare Metals, 2022, 41, 2028-2037.	7.1	9
3	Non-monotonous effect of pre-strain on the precipitates and strengthening mechanisms of high-entropy alloys. Journal of Alloys and Compounds, 2022, 906, 164338.	5.5	5
4	Concurrent Recrystallization and Precipitation for Combination of Superior Precipitation and Grain Boundary Hardening in Co37Cr20Ni37Ti3Al3 High-Entropy Alloy. Metals and Materials International, 2022, 28, 2863-2873.	3.4	12
5	Endless recrystallization of high-entropy alloys at high temperature. Journal of Materials Science and Technology, 2022, 128, 71-81.	10.7	9
6	Deformation faulting and dislocation-cell refinement in a selective laser melted 316L stainless steel. International Journal of Plasticity, 2022, 156, 103346.	8.8	17
7	Rapid alloy design from superior eutectic high-entropy alloys. Scripta Materialia, 2022, 219, 114875.	5.2	20
8	The dual effect of grain size on the strain hardening behaviors of Ni-Co-Cr-Fe high entropy alloys. Journal of Materials Science and Technology, 2022, 131, 177-184.	10.7	15
9	Elemental partitioning as a route to design precipitation-hardened high entropy alloys. Journal of Materials Science and Technology, 2021, 72, 52-60.	10.7	20
10	Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging. Journal of Materials Science and Technology, 2021, 69, 156-167.	10.7	48
11	Temperature-dependent helium induced microstructural evolution in equiatomic NiCo and NiFe concentrated solid solution alloys. Journal of Nuclear Materials, 2021, 545, 152715.	2.7	4
12	Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx. Acta Metallurgica Sinica (English) Tj ETQqO 0 0 rgE	3T /Overloo 2.9	ck 10 Tf 50 3
13	Distinct Recrystallization Kinetics in Ni–Co–Cr–Fe-Based Single-Phase High-Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3799-3810.	2.2	5
14	Effect of Re and Ru on the phase stability and coarsening kinetics of L12 phase in a Ni29Co27Fe27Cr3Al7Ti7 high entropy alloy. Journal of Alloys and Compounds, 2021, 866, 158904.	5.5	14
15	Heterogeneous microstructure of the bonding zone and its dependence on preheating in hybrid manufactured Ti-6Al-4V. Materials Research Letters, 2021, 9, 422-428.	8.7	10
16	Origins of the mechanical property heterogeneity in a hybrid additive manufactured Hastelloy X. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141716.	5.6	19

17	Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength. International Journal of Plasticity, 2021, 144, 103022.	8.8	51
18	Composition-dependent slip planarity in mechanically-stable face centered cubic complex concentrated alloys and its mechanical effects. Acta Materialia, 2021, 220, 117314.	7.9	24

2

Feng He

#	Article	IF	CITATIONS
19	Effects of temperature on helium cavity evolution in single-phase concentrated solid-solution alloys. Journal of Nuclear Materials, 2021, 557, 153261.	2.7	8
20	Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Materialia, 2020, 182, 278-286.	7.9	143
21	Superior Slurry Erosion Behavior of a Casting NiCoCrFeNb0.45 Eutectic High Entropy Alloy. Acta Metallurgica Sinica (English Letters), 2020, 33, 1111-1116.	2.9	11
22	Effect of silicon addition on the microstructures, mechanical properties and helium irradiation resistance of NiCoCr-based medium-entropy alloys. Journal of Alloys and Compounds, 2020, 844, 156162.	5.5	30
23	A precipitation-strengthened high-entropy alloy for additive manufacturing. Additive Manufacturing, 2020, 35, 101410.	3.0	15
24	Effect of Ta addition on solidification characteristics of CoCrFeNiTax eutectic high entropy alloys. Intermetallics, 2020, 120, 106769.	3.9	24
25	Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L12 phase. Scripta Materialia, 2020, 183, 111-116.	5.2	22
26	Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Materialia, 2019, 167, 275-286.	7.9	172
27	Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys. Intermetallics, 2019, 110, 106476.	3.9	76
28	Grouping strategy in eutectic multi-principal-component alloys. Materials Chemistry and Physics, 2019, 221, 138-143.	4.0	27
29	Quantitative determination of the lattice constant in high entropy alloys. Scripta Materialia, 2019, 162, 468-471.	5.2	40
30	Novel Co-rich high entropy alloys with superior tensile properties. Materials Research Letters, 2019, 7, 82-88.	8.7	139
31	Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys. Journal of Alloys and Compounds, 2019, 775, 1376-1385.	5.5	129
32	Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scripta Materialia, 2018, 148, 42-46.	5.2	54
33	Abnormal γ″ - ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scripta Materialia, 2018, 146, 281-285.	5.2	43
34	The intrinsic mechanism of corrosion resistance for FCC high entropy alloys. Science China Technological Sciences, 2018, 61, 189-196.	4.0	48
35	Elemental Phase Partitioning in the γ-γ″ Ni2CoFeCrNb0.15 High Entropy Alloy. Entropy, 2018, 20, 910.	2.2	10
36	Metastability in high-entropy alloys: A review. Journal of Materials Research, 2018, 33, 2924-2937.	2.6	85

Feng He

#	Article	IF	CITATIONS
37	Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy. Scripta Materialia, 2018, 155, 134-138.	5.2	41
38	Revealing the Selection of σ and μ Phases in CoCrFeNiMox High Entropy Alloys by CALPHAD. Journal of Phase Equilibria and Diffusion, 2018, 39, 446-453.	1.4	25
39	Solid solubility, precipitates, and stacking fault energy of micro-alloyed CoCrFeNi high entropy alloys. Journal of Alloys and Compounds, 2018, 769, 490-502.	5.5	46
40	High Entropy Alloys: From Bulk Metallic Materials to Nanoparticles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4986-4990.	2.2	23
41	Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys. Journal of Alloys and Compounds, 2018, 735, 2653-2662.	5.5	93
42	Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scripta Materialia, 2017, 131, 42-46.	5.2	81
43	Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scripta Materialia, 2017, 126, 15-19.	5.2	212
44	Kinetic ways of tailoring phases in high entropy alloys. Scientific Reports, 2016, 6, 34628.	3.3	29
45	Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Materials and Design, 2016, 104, 259-264.	7.0	128
46	Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. Journal of Alloys and Compounds, 2016, 667, 53-57.	5.5	106
47	Designing eutectic high entropy alloys of CoCrFeNiNb x. Journal of Alloys and Compounds, 2016, 656, 284-289.	5.5	340
48	Effects of surfactant on capillary evaporation process with thick films. International Journal of Heat and Mass Transfer, 2015, 88, 406-410.	4.8	8
49	The phase stability of Ni2CrFeMox multi-principal-component alloys with medium configurational entropy. Materials and Design, 2015, 85, 1-6.	7.0	29
50	Investigation on the capillary evaporation process based on the existence of liquid film. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 246401.	0.5	1
51	Design of D0 ₂₂ Superlattice with Superior Strengthening Effect in High Entropy Alloys. SSRN Electronic Journal, 0, , .	0.4	0
52	Uncovering the Eutectics Design by Machine Learning in the Al-Co-Cr-Fe-Ni High Entropy System. SSRN Electronic Journal, 0, , .	0.4	0
53	Anomalous Effect of Lattice Misfit on the Coarsening Behavior of Multicomponent L12 Phase. SSRN Electronic Journal, 0, , .	0.4	0
54	Elemental Partitioning as a Route to Design Precipitation-Hardened High Entropy Alloys. SSRN Electronic Journal, 0, , .	0.4	0