Jian Zhang ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/8795845/publications.pdf Version: 2024-02-01 488 papers 24,858 citations 85 h-index 128 g-index 488 all docs 488 docs citations 488 times ranked 16112 citing authors | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 1 | Tunable chiroptical application by encapsulating achiral lanthanide complexes into chiral MOF thin films. Nano Research, 2022, 15, 1102-1108. | 5.8 | 34 | | 2 | Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, . | 7.2 | 23 | | 3 | Synthesis, Structure, and Light Absorption Behaviors of Prismatic Titanium-Oxo Clusters Containing Lacunary Lindqvist-like Species. Inorganic Chemistry, 2022, 61, 1385-1390. | 1.9 | 3 | | 4 | Stepwise assembly and reversible structural transformation of ligated titanium coated bismuth-oxo cores: shell morphology engineering for enhanced chemical fixation of CO ₂ . Chemical Science, 2022, 13, 3395-3401. | 3.7 | 17 | | 5 | Aluminum molecular rings bearing amino-polyalcohol for iodine capture. Inorganic Chemistry Frontiers, 2022, 9, 592-598. | 3.0 | 9 | | 6 | Heterometallic chiral [Mn13Cu8] single-molecule magnets. Dalton Transactions, 2022, , . | 1.6 | 3 | | 7 | Efficient access to 1,3,4-trisubstituted pyrroles via gold-catalysed cycloisomerization of 1,5-diynes. Organic and Biomolecular Chemistry, 2022, , . | 1.5 | 3 | | 8 | Triethanolamine stabilized non-alkyl Sn ₄ Cd ₄ and alkyl Sn ₂ Cd ₁₂ oxo clusters with distinct electrocatalytic activities. Chemical Communications, 2022, 58, 4759-4762. | 2.2 | 4 | | 9 | Tunable third-order nonlinear optical effect <i>via</i> modifying Ti ₄ (embonate) ₆ cage-based ionic pairs. Inorganic Chemistry Frontiers, 2022, 9, 1984-1991. | 3.0 | 8 | | 10 | Syntheses of new zeolitic imidazolate frameworks in dimethyl sulfoxide. Inorganic Chemistry Frontiers, 2022, 9, 2011-2015. | 3.0 | 6 | | 11 | Synergistic Lewis acid and Pd active sites of metal–organic frameworks for highly efficient carbonylation of methyl nitrite to dimethyl carbonate. Inorganic Chemistry Frontiers, 2022, 9, 2379-2388. | 3.0 | 11 | | 12 | Inorganic acid influenced formation of Ti ₂₆ and Ti ₄₄ oxysulfate clusters with toroidal and capsule structures. Dalton Transactions, 2022, , . | 1.6 | 3 | | 13 | Acid–base resistant ligand-modified molybdenum–sulfur clusters with enhanced photocatalytic activity towards hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 7138-7145. | 5.2 | 7 | | 14 | Preparation and Visible-Light Response of Salicylate-Stabilized Heterobimetallic Pb–Ti–Oxo Clusters Initiated via Auxiliary Quaternary Ammonium Salts and a Solvent Effect. Inorganic Chemistry, 2022, 61, 5017-5024. | 1.9 | 3 | | 15 | Chiral-Induced Ultrathin Covalent Organic Frameworks Nanosheets with Tunable Circularly Polarized Luminescence. Journal of the American Chemical Society, 2022, 144, 7245-7252. | 6.6 | 52 | | 16 | Composite of CsPbBr ₃ with Boron Imidazolate Frameworks as an Efficient Visible-Light Photocatalyst for CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 1175-1182. | 2.5 | 15 | | 17 | Synthesis and Third-Order Nonlinear Optical Properties of Metal–Organic Zeolites Built from Ti ₄ (embonate) ₆ Tetrahedra. Crystal Growth and Design, 2022, 22, 66-73. | 1.4 | 4 | | 18 | Host–Guest Pore Space Partition in a Boron Imidazolate Framework for Ethylene Separation. Chemistry of Materials, 2022, 34, 307-313. | 3.2 | 23 | | # | Article | IF | CITATIONS | |----|---|-------------|-----------| | 19 | Construction and two-dimensional assembly of double-shell Na@Sn ₆ L ₆ 66631.50 clusters through tetrahedral citrate ligands. Chemical Communications, 2022, 58, 5650-5652. | 2.2 | 3 | | 20 | Induction of Chirality in Boron Imidazolate Frameworks: The Structure-Directing Effects of Substituents. Inorganic Chemistry, 2022, 61, 6861-6868. | 1.9 | 5 | | 21 | Black Titanium-Oxo Clusters with Ultralow Band Gaps and Enhanced Nonlinear Optical Performance.
Journal of the American Chemical Society, 2022, 144, 8153-8161. | 6.6 | 39 | | 22 | Chiral Induction in Aluminum Oxo Sulfate Helical Chains. Crystal Growth and Design, 2022, 22, 3954-3960. | 1.4 | 2 | | 23 | Facile Synthesis of a Long Afterglow Calcium–Organic Framework in Water. ACS Omega, 2022, 7, 22015-22019. | 1.6 | 6 | | 24 | Divergent Access to Polycyclic <i>N</i> -Heterocyclic Compounds through Býchner-Type Dearomatization Enabled Cycloisomerization of Diynamides under Gold Catalysis. Organic Letters, 2022, 24, 4298-4303. | 2.4 | 6 | | 25 | Optimizing Photodetectors in Two-Dimensional Metal-Metalloporphyrinic Framework Thin Films. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33548-33554. | 4.0 | 13 | | 26 | Designing Cage-Supported Cluster-Organic Framework for Highly Efficient Optical Limiting. , 2022, 4, 1397-1401. | | 3 | | 27 | Assembly and packing models of [Ti6Co12] ring based on the titanium-capped cobalt clathrochelates. Chinese Chemical Letters, 2021, 32, 923-925. | 4.8 | 7 | | 28 | Design of Hybrid Zeolitic Imidazolate Frameworkâ€Derived Material with C–Mo–S Triatomic Coordination for Electrochemical Oxygen Reduction. Small, 2021, 17, e2003256. | 5. 2 | 14 | | 29 | Epitaxial growth of prussian blue analogue derived NiFeP thin film for efficient electrocatalytic hydrogen evolution reaction. Journal of Solid State Chemistry, 2021, 293, 121779. | 1.4 | 14 | | 30 | Combining a Titanium–Organic Cage and a Hydrogenâ€Bonded Organic Cage for Highly Effective Thirdâ€Order Nonlinear Optics. Angewandte Chemie, 2021, 133, 2956-2959. | 1.6 | 9 | | 31 | Construction of Metal–Organic Frameworks with Various Zinc-Tetrazolate Nanotubes. Crystal Growth and Design, 2021, 21, 28-32. | 1.4 | 10 | | 32 | Designable Al ₃₂ â€Oxo Clusters with Hydrotalciteâ€like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting. Angewandte Chemie - International Edition, 2021, 60, 4849-4854. | 7.2 | 39 | | 33 | Polyoxo-titanium clusters promoted photocatalytic H2 evolution activity in a NiS modified CdS/MIL-101 system. International Journal of Hydrogen Energy, 2021, 46, 6369-6379. | 3.8 | 10 | | 34 | Atomically defined Co on two-dimensional TiO2 nanosheet for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 420, 127681. | 6.6 | 40 | | 35 | Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angewandte
Chemie - International Edition, 2021, 60, 3087-3094. | 7.2 | 41 | | 36 | Construction of Titanium-Based Metal–Organic Frameworks Based on the Ti/Cu Heteronuclear Cluster. Inorganic Chemistry, 2021, 60, 24-27. | 1.9 | 4 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 37 | A Cu(<scp>i</scp>) based boron imidazolate framework for visible light driven CO ₂ reduction. Dalton Transactions, 2021, 50, 490-493. | 1.6 | 7 | | 38 | Large Titanium-Oxo Clusters as Precursors to Synthesize the Single Crystals of Ti-MOFs., 2021, 3, 64-68. | | 62 | | 39 | Single-Crystal Syntheses and Properties of Indium–Organic Frameworks Based on 1,1′-Ferrocenedicarboxylic Acid. Inorganic Chemistry, 2021, 60, 239-245. | 1.9 | 9 | | 40 | Designable Al ₃₂ â€Oxo Clusters with Hydrotalciteâ€like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting. Angewandte Chemie, 2021, 133, 4899-4904. | 1.6 | 3 | | 41 | Engineering nanointerface of molybdenum-based heterostructures to boost the electrocatalytic hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 58, 370-376. | 7.1 | 18 | | 42 | Combining a Titanium–Organic Cage and a Hydrogenâ€Bonded Organic Cage for Highly Effective Thirdâ€Order Nonlinear Optics. Angewandte Chemie - International Edition, 2021, 60, 2920-2923. | 7.2 | 59 | | 43 | Investigation on the variation regularity of the characteristic droplet diameters in the swirling flow field. Chemical Engineering Science, 2021, 229, 116153. | 1.9 | 13 | | 44 | Unraveling the condensation reactions of heterometallic {BiNb4} moieties into hybrid BixNby-oxo clusters with mass spectrometry. Science China Chemistry, 2021, 64, 413-418. | 4.2 | 5 | | 45 | Highly efficient electrocatalysts for overall water splitting: mesoporous CoS/MoS ₂ with hetero-interfaces. Chemical Communications, 2021, 57, 4847-4850. | 2.2 | 45 | | 46 | Functional ligand directed assembly and electronic structure of Sn ₁₈ -oxo wheel nanoclusters. Chemical Communications, 2021, 57, 5159-5162. | 2.2 | 4 | | 47 | Homochiral metal–organic frameworks for enantioseparation. Chemical Society Reviews, 2021, 50, 5706-5745. | 18.7 | 86 | | 48 | Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chemical Science, 2021, 12, 12346-12352. | 3.7 | 11 | | 49 | A hybrid zeolitic imidazolate framework-derived ZnO/ZnMoO ₄ heterostructure for electrochemical hydrogen production. Dalton Transactions, 2021, 50, 11365-11369. | 1.6 | 7 | | 50 | Molecular bixbyite-like $\ln < sub > 12 < / sub > -oxo$ clusters with tunable functionalization sites for lithography patterning applications. Chemical Science, 2021, 12, 14414-14419. | 3.7 | 11 | | 51 | Chiral induction in boron imidazolate frameworks: the construction of cage-based absolute helices. Chemical Communications, 2021, 57, 5020-5023. | 2.2 | 11 | | 52 |
Rational assembly of metal-oxo clusters into molecular materials <i>via</i> a "wheel mounting― mode. Inorganic Chemistry Frontiers, 2021, 8, 4102-4106. | 3.0 | 0 | | 53 | Aluminium nanorings: configuration deformation and structural transformation. Chemical Communications, 2021, 57, 2085-2088. | 2.2 | 10 | | 54 | A metal-porphyrinic framework film as an efficient optical limiting layer in an electro-optical switchable device. Chemical Communications, 2021, 57, 10166-10169. | 2.2 | 8 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 55 | Organocatalytic enantioselective Diels–Alder reaction between hydroxymaleimides and <i>in situ</i> generated nitrosoalkenes for direct preparation of chiral hemiketals with 1,2-oxazine skeleton.
Organic Chemistry Frontiers, 2021, 8, 6215-6219. | 2.3 | 2 | | 56 | Experimental and Theoretical Studies on Effects of Structural Modification of Tin Nanoclusters for Third-Order Nonlinear Optical Properties. Inorganic Chemistry, 2021, 60, 1885-1892. | 1.9 | 21 | | 57 | Step by Step Bisacrificial Templates Growth of Bimetallic Sulfide QDsâ€Attached MOF Nanosheets for Nonlinear Optical Limiting. Advanced Optical Materials, 2021, 9, 2002072. | 3.6 | 25 | | 58 | Vertically Aligned MoS ₂ with In-Plane Selectively Cleaved Mo–S Bond for Hydrogen Production. Nano Letters, 2021, 21, 1848-1855. | 4.5 | 63 | | 59 | Hybrid Zeolitic Imidazolate Frameworks for Promoting Electrocatalytic Oxygen Evolution via a Dual-Site Relay Mechanism. Inorganic Chemistry, 2021, 60, 3074-3081. | 1.9 | 17 | | 60 | Phosphorescent Calcium-Based Metal–Organic Framework with Second-Scale Long Afterglow. Inorganic Chemistry, 2021, 60, 10075-10078. | 1.9 | 11 | | 61 | Synthesis and Structure of a Series of Ti ₆ â€oxo Clusters Functionalized by <i>in situ</i> Esterified Dicarboxylate Ligands. Chinese Journal of Chemistry, 2021, 39, 1259-1264. | 2.6 | 6 | | 62 | Synthesis, Structures, and Fluorescence Properties of Dimeric Aluminum Oxo Clusters. Inorganic Chemistry, 2021, 60, 7089-7093. | 1.9 | 6 | | 63 | Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic
Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€State Opticalâ€Limiting
Application. Angewandte Chemie - International Edition, 2021, 60, 12949-12954. | 7.2 | 38 | | 64 | Oriented Growth of Inâ€Oxo Chain Based Metalâ€Porphyrin Framework Thin Film for Highâ€Sensitive Photodetector. Advanced Science, 2021, 8, 2100548. | 5.6 | 23 | | 65 | Synthesis of a Boron–Imidazolate Framework Nanosheet with Dimer Copper Units for CO ₂ Electroreduction to Ethylene. Angewandte Chemie - International Edition, 2021, 60, 16687-16692. | 7.2 | 99 | | 66 | Synthesis of a Boron–Imidazolate Framework Nanosheet with Dimer Copper Units for CO 2 Electroreduction to Ethylene. Angewandte Chemie, 2021, 133, 16823-16828. | 1.6 | 10 | | 67 | Design and synthesis of zeolitic tetrazolate-imidazolate frameworks. Materials Today Advances, 2021, 10, 100145. | 2.5 | 10 | | 68 | Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts. Nano-Micro Letters, 2021, 13, 136. | 14.4 | 138 | | 69 | Odd-membered cyclic hetero-polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity. Chinese Journal of Catalysis, 2021, 42, 1332-1337. | 6.9 | 5 | | 70 | Tin Metal Cluster Compounds as New Third-Order Nonlinear Optical Materials by Computational Study. Journal of Physical Chemistry Letters, 2021, 12, 7537-7544. | 2.1 | 13 | | 71 | Designable Assembly of Aluminum Molecular Rings for Sequential Confinement of Iodine Molecules.
Angewandte Chemie - International Edition, 2021, 60, 21426-21433. | 7.2 | 49 | | 72 | Phenol-triggered supramolecular transformation of titanium–oxo cluster based coordination capsules. Chinese Chemical Letters, 2021, 32, 2415-2418. | 4.8 | 6 | | # | Article | IF | Citations | |----|---|------|-----------| | 73 | Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. Advanced Materials, 2021, 33, e2008376. | 11.1 | 114 | | 74 | Two Isostructural Titanium Metal–Organic Frameworks for Light Hydrocarbon Separation. Inorganic Chemistry, 2021, 60, 13955-13959. | 1.9 | 12 | | 75 | Protection of Ag Clusters by Metalâ€Oxo Modules. Chemistry - A European Journal, 2021, 27, 15563-15570. | 1.7 | 10 | | 76 | Macrocyclic Inorganic Tin ontaining Oxo Clusters: Heterometallic Strategy for Configuration and Catalytic Activity Modulation. Chemistry - A European Journal, 2021, 27, 16117-16120. | 1.7 | 6 | | 77 | Interpenetrated Metal-Porphyrinic Framework for Enhanced Nonlinear Optical Limiting. Journal of the American Chemical Society, 2021, 143, 17162-17169. | 6.6 | 85 | | 78 | Mesoporous Assembly of Aluminum Molecular Rings for Iodine Capture. Journal of the American Chemical Society, 2021, 143, 2325-2330. | 6.6 | 98 | | 79 | Sn ₆ and Na ₄ Oxo Clusters Based Non-centrosymmetric Framework for Solution Iodine Absorption and Second Harmonic Generation Response. Inorganic Chemistry, 2021, 60, 1985-1990. | 1.9 | 10 | | 80 | Asymmetric metal–organic frameworks with double helices for enantioselective recognition. CrystEngComm, 2021, 23, 4748-4751. | 1.3 | 3 | | 81 | Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065. | 10.1 | 25 | | 82 | The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. Nanomaterials, 2021, 11, 2791. | 1.9 | 3 | | 83 | Heterometallic Al ₆ Zn ₁₂ nano-plate with π-conjugated ligand: synthesis and nonlinear absorption properties. Chemical Communications, 2021, 57, 12820-12823. | 2.2 | 3 | | 84 | Oriented Assembly of 2D Metal-Pyridylporphyrinic Framework Films for Giant Nonlinear Optical Limiting. Nano Letters, 2021, 21, 10012-10018. | 4.5 | 28 | | 85 | Coordination Assembly of Tetrahedral Zr ₄ (embonate) ₆ Cages with Eu ³⁺ Ions. Inorganic Chemistry, 2021, 60, 18178-18184. | 1.9 | 7 | | 86 | Novel Third-Order Nonlinear Optical Materials with Craig-Möbius Aromaticity. Journal of Physical Chemistry Letters, 2021, 12, 11784-11789. | 2.1 | 13 | | 87 | Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. Journal of Energy Chemistry, 2020, 40, 156-170. | 7.1 | 130 | | 88 | Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinc–air batteries. Nanoscale Horizons, 2020, 5, 359-365. | 4.1 | 27 | | 89 | A coreâ€"shell type alkyl-Sn-oxo cluster of {Sn ₁₄ As ₁₆ } bridged by 4-aminophenylarsonate ligands and incorporated with a {Na ₆ } cluster. Chemical Communications, 2020, 56, 1433-1435. | 2.2 | 11 | | 90 | Ti ₄ (embonate) ₆ Cage-Ligand Strategy on the Construction of Metal–Organic Frameworks with High Stability and Gas Sorption Properties. Inorganic Chemistry, 2020, 59, 964-967. | 1.9 | 21 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 91 | Auto-controlled fabrication of a metal-porphyrin framework thin film with tunable optical limiting effects. Chemical Science, 2020, 11, 1935-1942. | 3.7 | 68 | | 92 | Co ₉ S ₈ integrated into nitrogen/sulfur dual-doped carbon nanofibers as an efficient oxygen bifunctional electrocatalyst for Zn–air batteries. Sustainable Energy and Fuels, 2020, 4, 1093-1098. | 2.5 | 15 | | 93 | Ti ₄ (embonate) ₆ Based Cage-Cluster Construction in a Stable Metal–Organic Framework for Gas Sorption and Separation. Crystal Growth and Design, 2020, 20, 29-32. | 1.4 | 19 | | 94 | Epitaxial Growth of Highly Transparent Metal–Porphyrin Framework Thin Films for Efficient Bifacial Dye-Sensitized Solar Cells. ACS Applied Materials & | 4.0 | 33 | | 95 | Host–Guest Thin Films by Confining Ultrafine Pt/C QDs into Metalâ€Organic Frameworks for Highly Efficient Hydrogen Evolution. Small, 2020, 16, e2005111. | 5.2 | 39 | | 96 | Self-Assembly of a Ti ₄ (embonate) ₆ Cage toward Silver. Inorganic Chemistry, 2020, 59, 14861-14865. | 1.9 | 14 | | 97 | Heterometallic Ag ₂ Ti ₁₀ and Ag ₄ Ti ₈ -oxo clusters with different silver doping models: synthesis, structure, and theoretical studies. Dalton Transactions, 2020, 49, 11005-11009. | 1.6 | 7 | | 98 | Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium–Pyrogallol Scaffolds in Electrochemical CO2 Reduction. ACS Applied Materials & Diterfaces, 2020, 12, 52588-52594. | 4.0 | 3 | | 99 | Synthesis of Supramolecular Boron Imidazolate Frameworks for CO ₂ Photoreduction. Inorganic Chemistry, 2020, 59, 17851-17855. | 1.9 | 14 | | 100 | A green separation process of Ag <i>via</i> a Ti ₄ (embonate) ₆ cage. Dalton Transactions, 2020, 49, 17194-17199. | 1.6 | 8 | | 101 | Synthesis of a Homochiral Metal–Organic Zeolite for Enantioselective Sensing and Separation.
Crystal Growth and Design, 2020, 20, 5644-5647. | 1.4 | 12 | | 102 | Synthesis of Ag-Doped Polyoxotitanium Nanoclusters for
Efficient Electrocatalytic CO ₂ Reduction. Inorganic Chemistry, 2020, 59, 11442-11448. | 1.9 | 23 | | 103 | N-Heterocyclic Carbene as a Surface Platform for Assembly of Homochiral Metal–Organic Framework Thin Films in Chiral Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38357-38364. | 4.0 | 20 | | 104 | Stepwise Coordination Assembly Approach toward Aluminum-Lanthanide-based Compounds. Inorganic Chemistry, 2020, 59, 13760-13766. | 1.9 | 9 | | 105 | Optical Resolution Studies on Ti/Zr-Based Tetrahedral Cages. Crystal Growth and Design, 2020, 20, 6316-6320. | 1.4 | 7 | | 106 | CoMo-bimetallic N-doped porous carbon materials embedded with highly dispersed Pt nanoparticles as pH-universal hydrogen evolution reaction electrocatalysts. Nanoscale, 2020, 12, 19804-19813. | 2.8 | 38 | | 107 | In Situ Encapsulation of Organic Sulfates in Layered Structures of Zinc and Tris(4-(1H-Imidazol-1-yl)phenyl)amine. Crystal Growth and Design, 2020, 20, 4228-4231. | 1.4 | 3 | | 108 | Supramolecular Co-assembly of the Ti ₈ L ₁₂ Cube with [Ti(DMF) ₆] Species and Ti ₁₂ -Oxo Cluster. Inorganic Chemistry, 2020, 59, 8291-8297. | 1.9 | 9 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 109 | Synthesis and photocatalytic activities of two homochiral metal–organic frameworks with cages and hydrogen bonding helices. CrystEngComm, 2020, 22, 4206-4209. | 1.3 | 8 | | 110 | Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization. Angewandte Chemie, 2020, 132, 16878-16883. | 1.6 | 14 | | 111 | Tetrahedral Geometry Induction of Stable Ag–Ti Nanoclusters by Flexible Trifurcate TiL ₃ Metalloligand. Journal of the American Chemical Society, 2020, 142, 12784-12790. | 6.6 | 35 | | 112 | Tin-oxychalcogenide supertetrahedral clusters maintained in a MTN zeolite-analog arrangement by coulombic interactions. Chemical Communications, 2020, 56, 8388-8391. | 2.2 | 8 | | 113 | Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization. Angewandte Chemie - International Edition, 2020, 59, 16735-16740. | 7.2 | 54 | | 114 | 2D Boron Imidazolate Framework Nanosheets with Electrocatalytic Applications for Oxygen Evolution and Carbon Dioxide Reduction Reaction. Small, 2020, 16, e1907669. | 5.2 | 20 | | 115 | Leadâ€Doped Titaniumâ€Oxo Clusters as Molecular Models of Perovskiteâ€Type PbTiO ₃ and Electronâ€Transport Material in Solar Cells. Chemistry - A European Journal, 2020, 26, 6894-6898. | 1.7 | 24 | | 116 | Adjustment of the performance and stability of isostructural zeolitic tetrazolate-imidazolate frameworks. Dalton Transactions, 2020, 49, 4690-4693. | 1.6 | 5 | | 117 | Templated synthesis of cobalt subnanoclusters dispersed N/C nanocages from COFs for highly-efficient oxygen reduction reaction. Chemical Engineering Journal, 2020, 401, 126149. | 6.6 | 40 | | 118 | A supersalt-type copper(<scp>i</scp>)-thiolate cluster with applications for mechano/thermochromism and the oxygen evolution reaction. Chemical Communications, 2020, 56, 3967-3970. | 2.2 | 13 | | 119 | Synergistic ligand effect for the construction of titanium–oxo clusters with planar chirality and high solution stability. Dalton Transactions, 2020, 49, 4030-4033. | 1.6 | 9 | | 120 | Zeolitic Tetrazolate–Imidazolate Frameworks with SOD Topology for Room Temperature Fixation of CO ₂ to Cyclic Carbonates. Crystal Growth and Design, 2020, 20, 2866-2870. | 1.4 | 22 | | 121 | Surface-coordinated metal–organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale, 2020, 12, 12712-12730. | 2.8 | 35 | | 122 | Syntheses and Structural Studies of a Series of Ti4(embonate)6-based Complexes. Acta Chimica Sinica, 2020, 78, 1411. | 0.5 | 4 | | 123 | Liquid-Phase Epitaxial Growth of Azapyrene-Based Chiral Metal–Organic Framework Thin Films for Circularly Polarized Luminescence. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31421-31426. | 4.0 | 53 | | 124 | HZIF-based hybrids for electrochemical energy applications. Nanoscale, 2019, 11, 15763-15769. | 2.8 | 18 | | 125 | Assembly of high-nuclearity Sn26, Sn34-oxo clusters: solvent strategies and inorganic Sn incorporation. Chemical Science, 2019, 10, 9125-9129. | 3.7 | 28 | | 126 | A wide pH-range stable crystalline framework based on the largest tin-oxysulfide cluster [Sn20O10S34]. Chemical Communications, 2019, 55, 11083-11086. | 2.2 | 15 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 127 | A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18519-18528. | 5.2 | 92 | | 128 | Synthesis of boron imidazolate frameworks with cobalt clusters for efficient visible-light driven CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 17272-17276. | 5.2 | 40 | | 129 | MAF-41 with intermediate-sized molecular sieving effect for highly selective separation of styrene. Science China Chemistry, 2019, 62, 1265-1266. | 4.2 | 0 | | 130 | Sn ₁₃ –Oxo Clusters with an Open Hollow Structural Motif and Decorated by Different Functional Ligands. Inorganic Chemistry, 2019, 58, 15692-15695. | 1.9 | 7 | | 131 | Synthesis and Photoelectric Properties of Metal–Organic Zeolites Built from TO ₄ and Organotin. Inorganic Chemistry, 2019, 58, 12521-12525. | 1.9 | 3 | | 132 | One-Pot and Postsynthetic Phenol-Thermal Synthesis toward Highly Stable Titanium-Oxo Clusters. Inorganic Chemistry, 2019, 58, 13353-13359. | 1.9 | 24 | | 133 | Acidâ€Controlled Synthesis of Carboxylateâ€Stabilized Ti ₄₄ â€Oxo Clusters: Scaling up Preparation, Exchangeable Protecting Ligands, and Photophysical Properties. Chemistry - A European Journal, 2019, 25, 10450-10455. | 1.7 | 31 | | 134 | Tunable Synthesis of Hollow Metal–Nitrogen–Carbon Capsules for Efficient Oxygen Reduction Catalysis in Proton Exchange Membrane Fuel Cells. ACS Nano, 2019, 13, 8087-8098. | 7.3 | 106 | | 135 | Isolated Squareâ€Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO ₂ to CO. Angewandte Chemie - International Edition, 2019, 58, 11752-11756. | 7.2 | 194 | | 136 | Ligand-directed assembly engineering of trapezoidal {Ti ₅ } building blocks stabilized by dimethylglyoxime. Dalton Transactions, 2019, 48, 9916-9919. | 1.6 | 13 | | 137 | Ag ₁₀ Ti ₂₈ â€Oxo Cluster Containing Singleâ€Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. Angewandte Chemie - International Edition, 2019, 58, 10932-10935. | 7.2 | 57 | | 138 | Amino-Polyalcohol-Solvothermal Synthesis of Titanium-Oxo Clusters: From Ti ₆ to Ti ₁₉ with Structural Diversity. Inorganic Chemistry, 2019, 58, 7267-7273. | 1.9 | 13 | | 139 | Pyrazole-thermal synthesis: a new approach towards N-rich titanium-oxo clusters with photochromic behaviors. Dalton Transactions, 2019, 48, 8049-8052. | 1.6 | 13 | | 140 | Nanocage-Based Porous Metal–Organic Frameworks Constructed from Icosahedrons and Tetrahedrons for Selective Gas Adsorption. ACS Applied Materials & Tetrahedrons (2019, 11, 20104-20109. | 4.0 | 35 | | 141 | Fast Synthesis of Hybrid Zeolitic Imidazolate Frameworks (HZIFs) with Exceptional Acid–Base Stability from ZIF-8 Precursors. Crystal Growth and Design, 2019, 19, 3430-3434. | 1.4 | 14 | | 142 | Mixed Short and Long Ligands toward the Construction of Metalâ€"Organic Frameworks with Large Pore Openings. Crystal Growth and Design, 2019, 19, 3120-3123. | 1.4 | 15 | | 143 | Hierarchical MoS ₂ Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. ACS Nano, 2019, 13, 5533-5540. | 7.3 | 187 | | 144 | Water-stable Zeolitic Tetrazolate-Imidazolate Frameworks (ZTIFs) with GIS topology. Inorganic Chemistry Communication, 2019, 105, 59-62. | 1.8 | 4 | | # | Article | IF | Citations | |-----|---|---------------------------------------|------------------------| | 145 | Synthesis of Anionic Metal–Organic Zeolites for Selective Gas Adsorption and Ion Exchange. Inorganic Chemistry, 2019, 58, 4076-4079. | 1.9 | 13 | | 146 | Stabilizing γ-Alkyltin–Oxo Keggin Ions by Borate Functionalization. Inorganic Chemistry, 2019, 58, 4534-4539. | 1.9 | 16 | | 147 | Co (II) Boron Imidazolate Framework with Rigid Auxiliary Linkers for Stable Electrocatalytic Oxygen Evolution Reaction. Advanced Science, 2019, 6, 1801920. | 5.6 | 46 | | 148 | Chiral induction in a pcu -derived network from achiral precursors. Chemical Communications, 2019, 55, 4611-4614. | 2.2 | 13 | | 149 | Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 245, 1-9. | 10.8 | 128 | | 150 | Water-Stable Metal–Organic Frameworks with Selective Sensing on Fe ³⁺ and Nitroaromatic Explosives, and Stimuli-Responsive Luminescence on Lanthanide Encapsulation. Inorganic Chemistry, 2019, 58, 1481-1491. | 1.9 | 125 | | 151 | Coordination Assembly of the Waterâ€Soluble Ti 4 (embonate) 6 Cages with Mn 2+ Ions. Israel Journal of Chemistry, 2019, 59, 233-236. | 1.0 | 8 | | 152 | Syntheses, crystal structures and fluorescent properties of two metal-organic frameworks based on pamoic acid. Journal of Solid State Chemistry, 2019, 270, 335-338. | 1.4 | 10 | | 153 | Wheelâ€Shape Heterometallic Ti ₁₀ M ₂ â€oxo Clusters (M = Ni, Co) with Effective
Visible Light Absorption. Chinese Journal of Chemistry, 2019, 37, 233-236. | 2.6 | 6 | | 154 | Isomerism in Titaniumâ€Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 1320-1323. | 7.2 | 121 | | 155 | Epitaxial growth and applications of oriented metal–organic framework thin films. Coordination Chemistry Reviews, 2019, 378, 513-532. | 9.5 | 122 | | 156 | Dicarboxylate Ligands Oriented Assembly of ${Ti \cdot sub \cdot 3 \cdot sub \cdot (1\frac{1}{4} \cdot sub \cdot 3 \cdot sub \cdot -0)}$ Units: From Dimer to Coordination Triangles and Rectangles. Inorganic Chemistry, 2018, 57, 5642-5647. | 1.9 | 16 | | 157 | High Color Rendering Index White-Light Emission from UV-Driven LEDs Based on Single Luminescent Materials: Two-Dimensional Perovskites (C ₆ H ₅ Cdsub>H ₃) ₂ PbBr <i>csub>ACS Applied Materials & Diterfaces (2018, 10, 15980-15987).</i> | < <td>>d⁵sub>4a</td> | >d ⁵ sub>4a | | 158 | General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles. ACS Nano, 2018, 12, 4594-4604. | 7.3 | 66 | | 159 | Synthesis of homochiral zeolitic imidazolate frameworks <i>via</i> solvent-assisted linker exchange for enantioselective sensing and separation. CrystEngComm, 2018, 20, 5925-5928. | 1.3 | 16 | | 160 | Tuning a layer to a three-dimensional cobalt-tris(4′-carboxybiphenyl)amine framework by introducing potassium ions. Inorganic Chemistry Communication, 2018, 90, 65-68. | 1.8 | 5 | | 161 | Design and synthesis of multifunctional metal–organic zeolites. Chemical Society Reviews, 2018, 47, 2130-2144. | 18.7 | 243 | | 162 | Syntheses of copper–iodine cluster-based frameworks for photocatalytic degradation of methylene blue. CrystEngComm, 2018, 20, 1232-1236. | 1.3 | 28 | | # | Article | IF | Citations | |-----|--|------|-----------| | 163 | Synthesis, structure and luminescent of Ag based homochiral metal tetrazolate coordination polymers. Inorganic Chemistry Communication, 2018, 89, 41-45. | 1.8 | 5 | | 164 | Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chemical Society Reviews, 2018, 47, 404-421. | 18.7 | 272 | | 165 | Construction of unprecedented pillar-layered metal organic frameworks via a dual-ligand strategy for dye degradation. Dalton Transactions, 2018, 47, 4032-4035. | 1.6 | 23 | | 166 | Interface engineered <i>in situ</i> anchoring of Co ₉ S ₈ nanoparticles into a multiple doped carbon matrix: highly efficient zincâ€"air batteries. Nanoscale, 2018, 10, 2649-2657. | 2.8 | 66 | | 167 | Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy, 2018, 45, 109-117. | 8.2 | 118 | | 168 | Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation. Nanoscale, 2018, 10, 2236-2241. | 2.8 | 50 | | 169 | Synthesis of zeolitic tetrazolate-imidazolate frameworks (ZTIFs) in ethylene glycol. Inorganic Chemistry Frontiers, 2018, 5, 675-678. | 3.0 | 9 | | 170 | Electrooxidation of Pd–Cu NP loaded porous carbon derived from a Cu-MOF. RSC Advances, 2018, 8, 1803-1807. | 1.7 | 15 | | 171 | Hydrogen bond-assisted homochiral lattice packing between inorganic helices built from heterometallic units. Dalton Transactions, 2018, 47, 2134-2137. | 1.6 | 3 | | 172 | Cobalt Boron Imidazolate Framework Derived Cobalt Nanoparticles Encapsulated in B/N Codoped Nanocarbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1801136. | 7.8 | 155 | | 173 | Embonic Acid Functionalized Niobium Complexes with Selective Dye Sorption Properties. Inorganic Chemistry, 2018, 57, 4226-4229. | 1.9 | 11 | | 174 | Hollow Cu–TiO ₂ /C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 7175-7181. | 5.2 | 74 | | 175 | Helical carbon tubes derived from epitaxial Cu-MOF coating on textile for enhanced supercapacitor performance. Dalton Transactions, 2018, 47, 5558-5563. | 1.6 | 32 | | 176 | Use of aligned triphenylamine-based radicals in a porous framework for promoting photocatalysis. Applied Catalysis B: Environmental, 2018, 221, 664-669. | 10.8 | 35 | | 177 | Ligand dependent assembly of trinuclear titanium-oxo units into coordination tetrahedra and capsules. Dalton Transactions, 2018, 47, 663-665. | 1.6 | 20 | | 178 | <i>In situ</i> synthesis of n–n Bi ₂ MoO ₆ & amp; Bi ₂ S ₃ heterojunctions for highly efficient photocatalytic removal of Cr(<scp>vi</scp>). Journal of Materials Chemistry A, 2018, 6, 22580-22589. | 5.2 | 200 | | 179 | Synthesis and structural characterization of a dumbbell-like phenylphosphonate-stabilized Ti ₇ –oxide cluster. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1248-1251. | 0.2 | 1 | | 180 | van der Waals Epitaxial Growth of 2D Metal–Porphyrin Framework Derived Thin Films for
Dyeâ€Sensitized Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800985. | 1.9 | 34 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 181 | Insight into Fe(Salen) Encapsulated Co-Porphyrin Framework Derived Thin Film for Efficient Oxygen Evolution Reaction. Crystal Growth and Design, 2018, 18, 7150-7157. | 1.4 | 18 | | 182 | Optical Resolution of the Water-Soluble Ti ₄ (embonate) ₆ Cages for Enantioselective Recognition of Chiral Drugs. Chemistry of Materials, 2018, 30, 7769-7775. | 3.2 | 49 | | 183 | A boron imidazolate framework with mechanochromic and electrocatalytic properties. Materials Horizons, 2018, 5, 1151-1155. | 6.4 | 44 | | 184 | Integrating the g-C ₃ N ₄ Nanosheet with Bâ€"H Bonding Decorated Metalâ€"Organic Framework for CO ₂ Activation and Photoreduction. ACS Nano, 2018, 12, 5333-5340. | 7.3 | 263 | | 185 | Double defects modified carbon nitride nanosheets with enhanced photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2018, 20, 17471-17476. | 1.3 | 26 | | 186 | Interface Designing over WS ₂ /W ₂ C for Enhanced Hydrogen Evolution Catalysis. ACS Applied Energy Materials, 2018, 1, 3377-3384. | 2.5 | 54 | | 187 | Host–Guest and Photophysical Behavior of Ti ₈ L ₁₂ Cube with Encapsulated [Ti(H ₂ O) ₆] Species. Chemistry - A European Journal, 2018, 24, 14358-14362. | 1.7 | 24 | | 188 | One unique neutral boron imidazolate framework with fluorescent property. Inorganic Chemistry Communication, 2018, 95, 130-133. | 1.8 | 4 | | 189 | Synthesis, Structures, and Photocurrent Responses of Polyoxo-Titanium Clusters with Oxime Ligands: From Ti ₄ to Ti ₁₈ . Inorganic Chemistry, 2018, 57, 8850-8856. | 1.9 | 27 | | 190 | Tunable MoS ₂ /SnO ₂ P–N Heterojunctions for an Efficient Trimethylamine Gas Sensor and 4-Nitrophenol Reduction Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 12375-12384. | 3.2 | 151 | | 191 | Structures and photophysical performances of (fluoro)salicylate stabilized polyoxo-titanium clusters. CrystEngComm, 2018, 20, 5964-5968. | 1.3 | 17 | | 192 | Atomically Precise Multimetallic Semiconductive Nanoclusters with Optical Limiting Effects. Angewandte Chemie - International Edition, 2018, 57, 11252-11256. | 7.2 | 99 | | 193 | Dual-Emission SG7@MOF Sensor via SC–SC Transformation: Enhancing the Formation of Excimer Emission and the Range and Sensitivity of Detection. ACS Applied Materials & Deterfaces, 2018, 10, 18012-18020. | 4.0 | 68 | | 194 | Visualizing Structural Transformation and Guest Binding in a Flexible Metal–Organic Framework under High Pressure and Room Temperature. ACS Central Science, 2018, 4, 1194-1200. | 5.3 | 46 | | 195 | Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388. | 11.1 | 184 | | 196 | Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 781-785. | 2.2 | 1 | | 197 | Synthesis of homochiral zeolitic metal–organic frameworks with amino acid and tetrazolates for chiral recognition. RSC Advances, 2017, 7, 4872-4875. | 1.7 | 34 | | 198 | Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and Efficient Nanoparticle Catalysis. Inorganic Chemistry, 2017, 56, 1402-1411. | 1.9 | 157 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 199 | Cocrystal of {Ti ₄ } and {Ti ₆ } Clusters with Enhanced Photochemical Properties. Inorganic Chemistry, 2017, 56, 2367-2370. | 1.9 | 28 | | 200 | Epitaxial Growth of Oriented Metalloporphyrin Network Thin Film for Improved Selectivity of Volatile Organic Compounds. Small, 2017, 13, 1604035. | 5.2 | 32 | | 201 | Facile Synthesis of Metal-Loaded Porous Carbon Thin Films via Carbonization of Surface-Mounted Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 3526-3531. | 1.9 | 21 | | 202 | Epitaxial Growth of MOF Thin Film for Modifying the Dielectric Layer in Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7259-7264. | 4.0 | 56 | | 203 | Synthesis and photocatalytic H2 evolution properties of four titanium-oxo-clusters based on a cyclohex-3-ene-1-carboxylate ligand. Dalton Transactions, 2017, 46, 10630-10634. | 1.6 | 21 | | 204 |
MOFâ€Templated Synthesis of Ultrasmall Photoluminescent Carbonâ€Nanodot Arrays for Optical Applications. Angewandte Chemie - International Edition, 2017, 56, 6853-6858. | 7.2 | 179 | | 205 | Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis. Nanoscale, 2017, 9, 7734-7738. | 2.8 | 15 | | 206 | Control of Interpenetration and Gas-Sorption Properties of Three Mn(II)-tris((4-carboxyl)phenylduryl)amine Frameworks by Tuning Solvent and Temperature. Crystal Growth and Design, 2017, 17, 290-294. | 1.4 | 26 | | 207 | Assembling Polyoxoâ€Titanium Clusters and CdS Nanoparticles to a Porous Matrix for Efficient and Tunable H ₂ â€Evolution Activities with Visible Light. Advanced Materials, 2017, 29, 1603369. | 11.1 | 113 | | 208 | Connecting Titanium-Oxo Clusters by Nitrogen Heterocyclic Ligands to Produce Multiple Cluster Series with Photocatalytic H ₂ Evolution Activities. Crystal Growth and Design, 2017, 17, 3592-3595. | 1.4 | 37 | | 209 | Synthesis, structure and proton conductivity of a metal–organic framework with rich hydrogen-bonds between the layers. Inorganic Chemistry Communication, 2017, 79, 37-40. | 1.8 | 15 | | 210 | Titanium–Oxo Cluster Based Precise Assembly for Multidimensional Materials. Chemistry of Materials, 2017, 29, 2681-2684. | 3.2 | 50 | | 211 | Synthesis of zeolite-like metal–organic frameworks via a dual-ligand strategy. CrystEngComm, 2017, 19, 2549-2552. | 1.3 | 11 | | 212 | Assembly of titanium-oxo cations with copper-halide anions to form supersalt-type cluster-based materials. Chemical Communications, 2017, 53, 3949-3951. | 2.2 | 39 | | 213 | Synthetic investigation, structural analysis and photocatalytic study of a carboxylate–phosphonate bridged Ti ₁₈ -oxo cluster. Dalton Transactions, 2017, 46, 803-807. | 1.6 | 29 | | 214 | Surface-mounted MOF templated fabrication of homochiral polymer thin film for enantioselective adsorption of drugs. Chemical Communications, 2017, 53, 1470-1473. | 2.2 | 41 | | 215 | Construction of molecular rectangles with titanium–oxo clusters and rigid aromatic carboxylate ligands. Dalton Transactions, 2017, 46, 16000-16003. | 1.6 | 14 | | 216 | Water-Soluble and Ultrastable Ti ₄ L ₆ Tetrahedron with Coordination Assembly Function. Journal of the American Chemical Society, 2017, 139, 16845-16851. | 6.6 | 145 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 217 | Synthesis of Homochiral Zeolitic Tetrazolate Frameworks Based on Enantiopure Porphyrin-like Subunits. Crystal Growth and Design, 2017, 17, 5393-5397. | 1.4 | 14 | | 218 | Syntheses, crystal structures and fluorescent properties of three metal-tris(4′-carboxybiphenyl)amine frameworks. Journal of Solid State Chemistry, 2017, 255, 200-205. | 1.4 | 10 | | 219 | p-Arsanilic acid stabilizing titanium-oxo clusters with various core structures and light absorption behaviours. Inorganic Chemistry Communication, 2017, 86, 14-17. | 1.8 | 5 | | 220 | Improving the photocatalytic H2 evolution activities of TiO2 by modulating the stabilizing ligands of the nanoscale Ti8O8-cluster precursors. International Journal of Hydrogen Energy, 2017, 42, 24737-24743. | 3.8 | 9 | | 221 | Polycatenation tuned microporosity of two metal–tris(4′-carboxybiphenyl)amine frameworks with multilayer structures. Dalton Transactions, 2017, 46, 13352-13355. | 1.6 | 9 | | 222 | Epitaxial encapsulation of homodispersed CeO ₂ in a cobalt–porphyrin network derived thin film for the highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20126-20130. | 5.2 | 36 | | 223 | Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by π-conjugated chromophores. Chemical Communications, 2017, 53, 8078-8080. | 2.2 | 36 | | 224 | An anionic Cd(ii) boron imidazolate framework with reversible structural transformation and biomolecular sensing properties. Dalton Transactions, 2017, 46, 10202-10204. | 1.6 | 6 | | 225 | Rational design of metal boron imidazolate cages to frameworks. Inorganica Chimica Acta, 2017, 460, 89-92. | 1.2 | 8 | | 226 | A Highly Energetic Nâ€Rich Metal–Organic Framework as a New Highâ€Energyâ€Density Material. Chemistry - A European Journal, 2016, 22, 1141-1145. | 1.7 | 58 | | 227 | Zeolitic metal-biomolecule frameworks based on supertetrahedral lithium clusters and hypoxanthine nucleobase. Inorganic Chemistry Communication, 2016, 71, 82-85. | 1.8 | 3 | | 228 | Synthesis of an Enantipure Tetrazole-Based Homochiral Cu ^{I,II} -MOF for Enantioselective Separation. Inorganic Chemistry, 2016, 55, 12520-12522. | 1.9 | 33 | | 229 | Adsorption of Iodine Based on a Tetrazolate Framework with Microporous Cages and Mesoporous Cages. Inorganic Chemistry, 2016, 55, 13035-13038. | 1.9 | 29 | | 230 | A couple of Co(II) enantiomers constructed from semirigid lactic acid derivatives. Inorganic Chemistry Communication, 2016, 73, 115-118. | 1.8 | 13 | | 231 | Selective Sorption of Light Hydrocarbons on a Family of Metal–Organic Frameworks with Different Imidazolate Pillars. Inorganic Chemistry, 2016, 55, 3928-3932. | 1.9 | 29 | | 232 | Diverse tetrahedral tetrazolate frameworks with N-rich surface. Chemical Communications, 2016, 52, 5625-5628. | 2.2 | 39 | | 233 | Chiral chemistry of metal–camphorate frameworks. Chemical Society Reviews, 2016, 45, 3122-3144. | 18.7 | 229 | | 234 | Unique microporous NbO-type Coll/Znll MOFs from double helical chains: Sorption and luminescent properties. Journal of Solid State Chemistry, 2016, 238, 170-174. | 1.4 | 9 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 235 | Synthesis of metal-adeninate frameworks with high separation capacity on C2/C1 hydrocarbons. Journal of Solid State Chemistry, 2016, 238, 241-245. | 1.4 | 20 | | 236 | Catenation of Homochiral Metal–Organic Nanocages or Nanotubes. Inorganic Chemistry, 2016, 55, 5095-5097. | 1.9 | 14 | | 237 | Zeolitic Tetrazolate-Imidazolate Frameworks with High Chemical Stability for Selective Separation of Small Hydrocarbons. Crystal Growth and Design, 2016, 16, 3063-3066. | 1.4 | 17 | | 238 | A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 28737-28742. | 4.0 | 132 | | 239 | An Ultrastable Europium(III)–Organic Framework with the Capacity of Discriminating Fe ²⁺ /Fe ³⁺ Ions in Various Solutions. Inorganic Chemistry, 2016, 55, 10114-10117. | 1.9 | 186 | | 240 | Azole Functionalized Polyoxo-Titanium Clusters with Sunlight-Driven Dye Degradation Applications: Synthesis, Structure, and Photocatalytic Studies. Inorganic Chemistry, 2016, 55, 10294-10301. | 1.9 | 47 | | 241 | Chiral Chemistry of Homochiral Porous Thin Film with Different Growth Orientations. ACS Applied Materials & Company (1988)
(1988) (1988 | 4.0 | 23 | | 242 | A pair of 3D homochiral helical metal–organic frameworks with hetrometallic chains constructed by proline derivative ligands. Polyhedron, 2016, 118, 91-95. | 1.0 | 2 | | 243 | Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Materials, 2016, 8, e293-e293. | 3.8 | 100 | | 244 | Liquid Phase Epitaxial Growth and Optical Properties of Photochromic Guest-Encapsulated MOF Thin Film. Crystal Growth and Design, 2016, 16, 5487-5492. | 1.4 | 35 | | 245 | Structural Design of Zeolitic Cluster Organic Frameworks from Hexamethylentetramine and Copper-Halide Clusters. Crystal Growth and Design, 2016, 16, 7139-7144. | 1.4 | 14 | | 246 | Encapsulation of Ln ^{III} ions/Ag nanoparticles within Cd(<scp>ii</scp>) boron imidazolate frameworks for tuning luminescence emission. Chemical Communications, 2016, 52, 8577-8580. | 2.2 | 17 | | 247 | A pair of novel Cd(II) enantiomers based on lactate derivatives: Synthesis, crystal structures and properties. Journal of Solid State Chemistry, 2016, 241, 105-109. | 1.4 | 4 | | 248 | Synthesis of Metal–Organic Zeolites with Homochirality and High Porosity for Enantioselective Separation. Inorganic Chemistry, 2016, 55, 6355-6357. | 1.9 | 18 | | 249 | A 3.6 nm Ti ₅₂ –Oxo Nanocluster with Precise Atomic Structure. Journal of the American Chemical Society, 2016, 138, 7480-7483. | 6.6 | 193 | | 250 | Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angewandte Chemie - International Edition, 2016, 55, 5160-5165. | 7.2 | 181 | | 251 | Waterâ€Stable Homochiral Cluster Organic Frameworks Built by Two Kinds of Large Tetrahedral Cluster Units. Chemistry - A European Journal, 2016, 22, 2611-2615. | 1.7 | 20 | | 252 | Interpenetrated Three-Dimensional Copper–Iodine Cluster-Based Framework with Enantiopure Porphyrin-like Templates. Inorganic Chemistry, 2016, 55, 1358-1360. | 1.9 | 37 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 253 | Selectivity of CO ₂ via pore space partition in zeolitic boron imidazolate frameworks. Chemical Communications, 2016, 52, 3552-3555. | 2.2 | 36 | | 254 | Mechanochromic Cu(<scp>i</scp>) boron imidazolate frameworks with low-dimensional structures and reducing function. Inorganic Chemistry Frontiers, 2016, 3, 263-267. | 3.0 | 26 | | 255 | Chiral Porous Metacrystals: Employing Liquid-Phase Epitaxy to Assemble Enantiopure Metal–Organic
Nanoclusters into Molecular Framework Pores. ACS Nano, 2016, 10, 977-983. | 7.3 | 83 | | 256 | Structure-dependent mechanochromism of two Ag(<scp>i</scp>) imidazolate chains. CrystEngComm, 2016, 18, 218-221. | 1.3 | 21 | | 257 | A pair of novel 4-connected homochiral coordination polymers based on proline-tetrazole ligand.
Inorganic Chemistry Communication, 2016, 67, 44-46. | 1.8 | 11 | | 258 | Synthesis of borocarbonitride from a multifunctional Cu(<scp>i</scp>) boron imidazolate framework. Dalton Transactions, 2016, 45, 5223-5228. | 1.6 | 5 | | 259 | Fullerene-like Polyoxotitanium Cage with High Solution Stability. Journal of the American Chemical Society, 2016, 138, 2556-2559. | 6.6 | 183 | | 260 | A new cadmium-doped titanium–oxo cluster with stable photocatalytic H ₂ evolution properties. Dalton Transactions, 2016, 45, 4501-4503. | 1.6 | 30 | | 261 | Host–Guest Chirality Interplay: A Mutually Induced Formation of a Chiral ZMOF and Its Double-Helix Polymer Guests. Journal of the American Chemical Society, 2016, 138, 786-789. | 6.6 | 125 | | 262 | Particular Handedness Excess through Symmetry-Breaking Crystallization of a 3D Cobalt Phosphonate. Inorganic Chemistry, 2016, 55, 537-539. | 1.9 | 18 | | 263 | A pair of homochiral porous metal–organic frameworks with a helical metal-carboxylate layer. New Journal of Chemistry, 2016, 40, 1927-1929. | 1.4 | 3 | | 264 | Halogen dependent symmetry change in two series of wheel cluster organic frameworks built from La ₁₈ tertiary building units. Chemical Communications, 2016, 52, 1455-1457. | 2.2 | 12 | | 265 | Enantiopure anion templated synthesis of a zeolitic metal–organic framework. Chemical Communications, 2016, 52, 1923-1925. | 2.2 | 35 | | 266 | Liquid-phase epitaxial growth of a homochiral MOF thin film on poly(<scp> </scp> -DOPA) functionalized substrate for improved enantiomer separation. Chemical Communications, 2016, 52, 772-775. | 2.2 | 60 | | 267 | Synthetic design of functional boron imidazolate frameworks. Coordination Chemistry Reviews, 2016, 307, 255-266. | 9.5 | 108 | | 268 | Synthesis and crystal structures of three metal-organic frameworks based on a triphenylamine-type polycarboxylic ligand. Chinese Science Bulletin, 2016, 61, 1781-1789. | 0.4 | 1 | | 269 | Construction of Cluster Organic Frameworks with <i>bnn</i> Hexagonal BN Topologies. Chemistry - A European Journal, 2015, 21, 15511-15515. | 1.7 | 19 | | 270 | Sizeâ€Dependent Enantioselective Adsorption of Racemic Molecules through Homochiral Metal–Organic Frameworks Embedding Helicity. Chemistry - A European Journal, 2015, 21, 10236-10240. | 1.7 | 29 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 271 | Interpreted Recognition Process: A Highly Sensitive and Selective Luminescence Chemosensor. Chemistry - A European Journal, 2015, 21, 11767-11772. | 1.7 | 20 | | 272 | Integration of a semi-rigid proline ligand and $4,4\hat{a}\in^2$ -bipyridine in the synthesis of homochiral metal $\hat{a}\in^\infty$ organic frameworks with helices. Dalton Transactions, 2015, 44, 11052-11056. | 1.6 | 11 | | 273 | N-donor ligands enhancing luminescence properties of seven Zn/Cd(<scp>ii</scp>) MOFs based on a large rigid l€-conjugated carboxylate ligand. CrystEngComm, 2015, 17, 9155-9166. | 1.3 | 69 | | 274 | Liquid-Phase Epitaxy Effective Encapsulation of Lanthanide Coordination Compounds into MOF Film with Homogeneous and Tunable White-Light Emission. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28585-28590. | 4.0 | 45 | | 275 | A Series of Homochiral Helical Metal–Organic Frameworks Based on Proline Derivatives. Crystal Growth and Design, 2015, 15, 5901-5909. | 1.4 | 27 | | 276 | A stable zinc-4-carboxypyrazole framework with high uptake and selectivity of light hydrocarbons. Dalton Transactions, 2015, 44, 2893-2896. | 1.6 | 47 | | 277 | Flexible Porous Zinc–Pyrazole–Adenine Framework for Hysteretic Sorption of Light Hydrocarbons.
Crystal Growth and Design, 2015, 15, 1210-1213. | 1.4 | 22 | | 278 | Encapsulation of an Interpenetrated Diamondoid Inorganic Building Block in a Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 4931-4934. | 1.7 | 13 | | 279 | Multiarylpolycarboxylate-Mediated Hybrid Cobalt Phosphate Frameworks with Supramolecular
Zeolitic Topology and Unusual I2O2 Connectivity. Inorganic Chemistry, 2015, 54, 1209-1211. | 1.9 | 16 | | 280 | Structural Transformation and Hysteretic Sorption of Light Hydrocarbons in a Flexible Zn–Pyrazole–Adenine Framework. Chemistry - A European Journal, 2015, 21, 5700-5703. | 1.7 | 41 | | 281 | Homochiral Metal–Organic Framework with Intrinsic Chiral Topology and Helical Channels. Crystal Growth and Design, 2015, 15, 1568-1571. | 1.4 | 34 | | 282 | A Rational Strategy To Construct a Neutral Boron Imidazolate Framework with Encapsulated Small-Size Au–Pd Nanoparticles for Catalysis. Inorganic Chemistry, 2015, 54, 6069-6071. | 1.9 | 17 | | 283 | Synthesis and gas sorption properties of a homochiral metal–organic framework with octahedral cages. CrystEngComm, 2015, 17, 6107-6109. | 1.3 | 9 | | 284 | Gas Sorption, Second-Order Nonlinear Optics, and Luminescence Properties of a Multifunctional srs-Type Metal–Organic Framework Built by Tris(4-carboxylphenylduryl)amine. Inorganic Chemistry, 2015, 54, 6653-6656. | 1.9 | 47 | | 285 | Self-Assembly of Metal Boron Imidazolate Cages. Crystal Growth and Design, 2015, 15, 2433-2436. | 1.4 | 23 | | 286 | Targeted design of a cubic boron imidazolate cage with sensing and reducing functions. Dalton Transactions, 2015, 44, 9367-9369. | 1.6 | 15 | | 287 | A structure-directing method to prepare semiconductive zeolitic cluster–organic frameworks with Cu ₃ 1 ₄ building units. Chemical Communications, 2015, 51, 8994-8997. | 2.2 | 44 | | 288 | Anionic Metal–Organic Framework for Adsorption and Separation of Light Hydrocarbons. Inorganic Chemistry, 2015, 54, 3093-3095. | 1.9 | 44 | | # | Article | IF | Citations | |-----
--|-----|-----------| | 289 | A highly stable face-extended diamondoid cluster–organic framework incorporating infinite inorganic guests. Chemical Communications, 2015, 51, 17174-17177. | 2.2 | 7 | | 290 | A zeolitic Cd(II) boron imidazolate framework with sensing and catalytic properties. Journal of Solid State Chemistry, 2015, 231, 185-189. | 1.4 | 11 | | 291 | Homochiral Cluster-Organic Frameworks Constructed from Enantiopure Lactate Derivatives. Crystal Growth and Design, 2015, 15, 4676-4686. | 1.4 | 33 | | 292 | Five porous zinc(<scp>ii</scp>) coordination polymers functionalized with amide groups: cooperative and size-selective catalysis. Journal of Materials Chemistry A, 2015, 3, 20210-20217. | 5.2 | 43 | | 293 | Asymmetric induction in homochiral MOFs: from interweaving double helices to single helices. Chemical Communications, 2015, 51, 16331-16333. | 2.2 | 34 | | 294 | Achievement of Bulky Homochirality in Zeolitic Imidazolate-Related Frameworks. Inorganic Chemistry, 2015, 54, 11064-11066. | 1.9 | 38 | | 295 | Integration of rigid and flexible organic parts for the construction of a homochiral metal–organic framework with high porosity. Chemical Communications, 2015, 51, 2565-2568. | 2.2 | 56 | | 296 | Water-Stable Metalâ€"Organic Frameworks for Fast and High Dichromate Trapping via Single-Crystal-to-Single-Crystal Ion Exchange. Chemistry of Materials, 2015, 27, 205-210. | 3.2 | 295 | | 297 | High and selective sorption of C2 hydrocarbons in heterometal–organic frameworks built from tetrahedral units. RSC Advances, 2015, 5, 7794-7797. | 1.7 | 16 | | 298 | Coordination polymers with free Br \tilde{A}_{s} , nsted acid sites for selective catalysis. New Journal of Chemistry, 2015, 39, 810-812. | 1.4 | 26 | | 299 | Facile synthesis of bimetal Au–Ag nanoparticles in a Cu(<scp>i</scp>) boron imidazolate framework with mechanochromic properties. Chemical Communications, 2015, 51, 1353-1355. | 2.2 | 49 | | 300 | Tuning the formations of metal-1,3,5-benzenetricarboxylate frameworks via the assistance of amino acids. Journal of Solid State Chemistry, 2015, 223, 44-52. | 1.4 | 2 | | 301 | Multifunctional Anionic MOF Material for Dye Enrichment and Selective Sorption of C ₂ Hydrocarbons over Methane via Ag ⁺ -Exchange. Inorganic Chemistry, 2014, 53, 12973-12976. | 1.9 | 47 | | 302 | Highly Selective and Sensitive Trimethylamine Gas Sensor Based on Cobalt Imidazolate Framework Material. ACS Applied Materials & Sensor Based on Cobalt Imidazolate Framework Material. ACS Applied Materials & Sensor Based on Cobalt Imidazolate Framework o | 4.0 | 146 | | 303 | Metal-organic frameworks based upon non-zeotype 4-connected topology. Coordination Chemistry Reviews, 2014, 261, 1-27. | 9.5 | 286 | | 304 | Chiral and achiral imidazole-linked tetrahedral zinc phosphonate frameworks with photoluminescent properties. Dalton Transactions, 2014, 43, 285-289. | 1.6 | 27 | | 305 | Guest inducing fluorescence switching in lanthanide–tris((4-carboxyl)phenylduryl)amine frameworks integrating porosity and flexibility. Journal of Materials Chemistry C, 2014, 2, 4436. | 2.7 | 57 | | 306 | Tetrahedral tetrazolate frameworks for high CO ₂ and H ₂ uptake. Dalton Transactions, 2014, 43, 3210-3214. | 1.6 | 33 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 307 | Assembly of Four Kinds of Cages into Porous Metal–Organic Framework for Selective Sorption of Light Hydrocarbons. Crystal Growth and Design, 2014, 14, 6467-6471. | 1.4 | 11 | | 308 | The photoluminescence and gas sorption properties of three Cd(ii) MOFs based on 1,3,5-benzenetribenzoate with $\hat{a} \in \text{``OH groups. Dalton Transactions, 2014, 43, 4668.}$ | 1.6 | 43 | | 309 | Homochiral Metal–Organic Frameworks with Enantiopure Proline Units for the Catalytic Synthesis of β-Lactams. Inorganic Chemistry, 2014, 53, 12199-12204. | 1.9 | 43 | | 310 | Cooperative ion-exchange and self-redox process to load catalytic metal nanoparticles into a MOF with Johnson-type cages. Chemical Communications, 2014, 50, 6153. | 2.2 | 32 | | 311 | A luminescent neutral cadmium(ii)–boron(iii)–imidazolate framework with sql net. CrystEngComm, 2014, 16, 2889. | 1.3 | 6 | | 312 | A water-stable zeolite-like metal–organic framework for selective separation of organic dyes. RSC Advances, 2014, 4, 1480-1483. | 1.7 | 52 | | 313 | Two luminescent Cu(i) coordination polymers based on the 1-(4-tetrazolephenyl)imidazole ligand for sensing of nitrobenzene. Inorganic Chemistry Frontiers, 2014, 1, 389. | 3.0 | 43 | | 314 | A spin-canted Ni ^{II} ₄ -based metalâ€"organic framework with gas sorption properties and high adsorptive selectivity for light hydrocarbons. Chemical Communications, 2014, 50, 9161. | 2.2 | 30 | | 315 | Zeolitic Metal–Organic Frameworks Based on Amino Acid. Inorganic Chemistry, 2014, 53, 10027-10029. | 1.9 | 44 | | 316 | Redox-active Cu(<scp>i</scp>) boron imidazolate framework for mechanochromic and catalytic applications. Chemical Communications, 2014, 50, 8754. | 2.2 | 55 | | 317 | Digital Controlled Luminescent Emission via Patterned Deposition of Lanthanide Coordination Compounds. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12594-12599. | 4.0 | 12 | | 318 | Organic Cation Templated Synthesis of Three Zinc–2,5-Thiophenedicarboxylate Frameworks for Selective Gas Sorption. Crystal Growth and Design, 2014, 14, 3493-3498. | 1.4 | 19 | | 319 | Structural Diversity and Photoluminescent Properties of Zinc Benzotriazole-5-carboxylate Coordination Polymers. Inorganic Chemistry, 2014, 53, 1500-1506. | 1.9 | 55 | | 320 | Alkali/alkaline earth metal and solvents-regulated construction of novel heterometallic coordination polymers based on a semirigid ligand and tetranuclear metal clusters. Inorganica Chimica Acta, 2014, 423, 62-71. | 1.2 | 25 | | 321 | Tuning Photoluminescence Emission of a Cadmium–Organic Framework by Excitation. ChemPlusChem, 2014, 79, 1080-1082. | 1.3 | 6 | | 322 | A new approach towards zeolitic tetrazolate-imidazolate frameworks (ZTIFs) with uncoordinated N-heteroatom sites for high CO2uptake. Chemical Communications, 2014, 50, 12065-12068. | 2.2 | 74 | | 323 | Highly Selective Sorption of Small Hydrocarbons and Photocatalytic Properties of Three Metal–Organic Frameworks Based on Tris(4-(1 <i>H</i> i>imidazol-1-yl)phenyl)amine Ligand. Inorganic Chemistry, 2014, 53, 4209-4214. | 1.9 | 76 | | 324 | Structure versatility of coordination polymers constructed from a semirigid ligand and polynuclear metal clusters. CrystEngComm, 2014, 16, 8047-8057. | 1.3 | 44 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 325 | Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorganic Chemistry, 2014, 53, 5411-5413. | 1.9 | 238 | | 326 | Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chemical Communications, 2014, 50, 8533. | 2.2 | 212 | | 327 | Synthesis and photoluminescent properties of four homochiral supramolecular compounds with butterfly-like chains. Inorganic Chemistry Communication, 2014, 46, 219-222. | 1.8 | 4 | | 328 | Zeolitic BIF Crystal Directly Producing Noble-Metal Nanoparticles in Its Pores for Catalysis. Scientific Reports, 2014, 4, 3923. | 1.6 | 48 | | 329 | An Anionic MOF for Separation of Organic Dyes via Cationic-Exchange and Size-Exclusion. Acta Chimica Sinica, 2014, 72, 1228. | 0.5 | 8 | | 330 | Tuning structural topologies of four Ni(ii) coordination polymers through modifying the substitute group of
organic ligand. CrystEngComm, 2013, 15, 6191. | 1.3 | 63 | | 331 | Solvent controlled assembly of four Mn(ii)-2,5-thiophenedicarboxylate frameworks with rod-packing architectures and magnetic properties. CrystEngComm, 2013, 15, 6009. | 1.3 | 42 | | 332 | A microporous nickel–organic framework with an unusual 10-connected bct net and high capacity for CO2, H2 and hydrocarbons. CrystEngComm, 2013, 15, 9499. | 1.3 | 13 | | 333 | Gas Sorption, Second-Order Nonlinear Optics, and Luminescence Properties of a Series of Lanthanide–Organic Frameworks Based on Nanosized Tris((4-carboxyl)phenylduryl)amine Ligand. Inorganic Chemistry, 2013, 52, 12758-12762. | 1.9 | 96 | | 334 | Tuning a layer to a pillared-layer metal–organic framework for adsorption and separation of light hydrocarbons. Chemical Communications, 2013, 49, 11323. | 2.2 | 121 | | 335 | An inorganic–organic hybrid zinc phosphite framework with unusual topology. Inorganic Chemistry Communication, 2013, 30, 136-138. | 1.8 | 7 | | 336 | Highly Efficient CH Oxidative Activation by a Porous Mn ^{III} â€"Porphyrin Metalâ€"Organic Framework under Mild Conditions. Chemistry - A European Journal, 2013, 19, 14316-14321. | 1.7 | 95 | | 337 | Using alkaline-earth metal ions to tune structural variations of 1,3,5-benzenetricarboxylate coordination polymers. Dalton Transactions, 2013, 42, 2294-2301. | 1.6 | 134 | | 338 | Organic templates promoted photocatalytic and photoluminescent properties between two coordination polymers. CrystEngComm, 2013, 15, 10423. | 1.3 | 17 | | 339 | A multifunctional helical Cu(i) coordination polymer with mechanochromic, sensing and photocatalytic properties. Chemical Communications, 2013, 49, 5660. | 2.2 | 273 | | 340 | Stable Mg-Metal–Organic Framework (MOF) and Unstable Zn-MOF Based on Nanosized Tris((4-carboxyl)phenylduryl)amine Ligand. Crystal Growth and Design, 2013, 13, 6-9. | 1.4 | 67 | | 341 | Enhancing CO ₂ adsorption enthalpy and selectivity viaamino functionalization of a tetrahedral framework material. CrystEngComm, 2013, 15, 658-661. | 1.3 | 31 | | 342 | Tuning structural topologies of five photoluminescent Cd(II) coordination polymers through modifying the substitute group of organic ligand. Journal of Solid State Chemistry, 2013, 199, 42-48. | 1.4 | 50 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 343 | Urothermal synthesis of photoluminescent lanthanide–organic frameworks with unusual topologies. CrystEngComm, 2013, 15, 315-323. | 1.3 | 42 | | 344 | Temperature-dependent urothermal synthesis of two distinct La(III)-naphthalenedicarboxylate frameworks. Inorganic Chemistry Communication, 2013, 29, 148-150. | 1.8 | 15 | | 345 | Ionothermal Synthesis of Chiral Metal Phosphite Open Frameworks with In Situ Generated Organic Templates. Inorganic Chemistry, 2013, 52, 5654-5656. | 1.9 | 44 | | 346 | Two-Dimensional Copper(I) Coordination Polymer Materials as Photocatalysts for the Degradation of Organic Dyes. Inorganic Chemistry, 2013, 52, 12-14. | 1.9 | 228 | | 347 | Metal–organic framework architecture with polyhedron-in-polyhedron and further polyhedral assembly. CrystEngComm, 2013, 15, 1036-1038. | 1.3 | 23 | | 348 | Optimization of Reaction Conditions towards Multiple Types of Framework Isomers and Periodicâ€increased Porosity: Luminescence Properties and Selective CO ₂ Adsorption over N ₂ . ChemPhysChem, 2013, 14, 3594-3599. | 1.0 | 14 | | 349 | Tetrahedral Polyoxometalate Nanoclusters with Tetrameric Rare-Earth Cores and Germanotungstate Vertexes. Crystal Growth and Design, 2013, 13, 4368-4377. | 1.4 | 38 | | 350 | Porous <i>ctn</i> à‶ype Boron Imidazolate Framework for Gas Storage and Separation. Chemistry - A European Journal, 2013, 19, 11527-11530. | 1.7 | 50 | | 351 | Cluster-Organic Framework Materials as Heterogeneous Catalysts for High Efficient Addition
Reaction of Diethylzinc to Aromatic Aldehydes. Chemistry of Materials, 2012, 24, 4711-4716. | 3.2 | 121 | | 352 | Deliberate design of a neutral heterometallic organic framework containing a record 25-fold interpenetrating diamondoid network. CrystEngComm, 2012, 14, 6359. | 1.3 | 43 | | 353 | Assembly between various molecular-building-blocks for network diversity of zinc–1,3,5-benzenetricarboxylate frameworks. CrystEngComm, 2012, 14, 8684. | 1.3 | 15 | | 354 | A microporous indium–organic framework with high capacity and selectivity for CO2 or organosulfurs. Dalton Transactions, 2012, 41, 2873. | 1.6 | 20 | | 355 | Open diamondoid amino-functionalized MOFs for CO2 capture. Chemical Communications, 2012, 48, 4842. | 2.2 | 74 | | 356 | Alkaline earth metal ion doped Zn(ii)-terephthalates. CrystEngComm, 2012, 14, 4843. | 1.3 | 124 | | 357 | Ring-size controllable metallamacrocycles as building blocks for the construction of microporous metal–organic frameworks. Chemical Communications, 2012, 48, 3653. | 2.2 | 38 | | 358 | Chiral transformations of achiral porous metal–organic frameworks via a stepwise approach. Chemical Communications, 2012, 48, 10419. | 2.2 | 30 | | 359 | Microporous Zinc Tris[(4-carboxyl)phenylduryl]amine Framework with an Unusual Topological Net for Gas Storage and Separation. Inorganic Chemistry, 2012, 51, 1995-1997. | 1.9 | 58 | | 360 | Urothermal synthesis and distinct thermal behavior of isostructural transition metal-based MIL-53 analogs. Solid State Sciences, 2012, 14, 1263-1266. | 1.5 | 10 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 361 | A Series of Ca(II) or Ba(II) Inorganicâ \in "Organic Hybrid Frameworks Based on Aromatic Polycarboxylate Ligands with the Inorganic Mâ \in "Oâ \in "M (M = Ca, Ba) Connectivity from 1D to 3D. Crystal Growth and Design, 2012, 12, 3231-3238. | 1.4 | 99 | | 362 | Tuning MOF Stability and Porosity via Adding Rigid Pillars. Inorganic Chemistry, 2012, 51, 9649-9654. | 1.9 | 79 | | 363 | Chiral assembly of dodecahedral cavities into porous metal–organic frameworks. Chemical Communications, 2012, 48, 9424. | 2.2 | 38 | | 364 | Guest selectivity of a porous tetrahedral imidazolate framework material during self-assembly. Journal of Materials Chemistry, 2012, 22, 19732. | 6.7 | 19 | | 365 | Redox Reaction Induced Structural Transformation among Three Copper Coordination Polymers.
Crystal Growth and Design, 2012, 12, 5164-5168. | 1.4 | 12 | | 366 | Comparative Study of Activation Methods on Tuning Gas Sorption Properties of a Metal–Organic Framework with Nanosized Ligands. Inorganic Chemistry, 2012, 51, 11232-11234. | 1.9 | 51 | | 367 | Luminescent MTN -Type Cluster–Organic Framework with 2.6 nm Cages. Journal of the American Chemical Society, 2012, 134, 17881-17884. | 6.6 | 239 | | 368 | Zeolitic Boron Imidazolate Frameworks with 4â€Connected Octahedral Metal Centers. Chemistry - A European Journal, 2012, 18, 11876-11879. | 1.7 | 38 | | 369 | Homochiral porous metal–organic frameworks containing only achiral building blocks for enantioselective separation. Journal of Materials Chemistry, 2012, 22, 16288. | 6.7 | 50 | | 370 | Temperature-Dependent Crystal Self-Assembly, Disassembly, and Reassembly Among Three Cadmium(II) Carboxylate-Phosphinates. Crystal Growth and Design, 2012, 12, 2052-2058. | 1.4 | 39 | | 371 | Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 2012, 22, 21849. | 6.7 | 289 | | 372 | Homochiral assembly of polycatenated bilayers with mixing achiral ligands. CrystEngComm, 2012, 14, 789-791. | 1.3 | 33 | | 373 | Lanthanide-Thiophene-2,5-dicarboxylate Frameworks: Ionothermal Synthesis, Helical Structures, Photoluminescent Properties, and Single-Crystal-to-Single-Crystal Guest Exchange. Inorganic Chemistry, 2012, 51, 523-530. | 1.9 | 112 | | 374 | pH Influence on the Structural Variations of 4,4 \hat{a} \in 2-Oxydiphthalate Coordination Polymers. Crystal Growth and Design, 2012, 12, 333-345. | 1.4 | 124 | | 375 | Tuning Structural Topologies of Three Photoluminescent Metal–Organic Frameworks via Isomeric Biphenyldicarboxylates. Inorganic Chemistry, 2012, 51, 9677-9682. | 1.9 | 187 | | 376 | Microporous Metal–Organic Framework Based on Mixing Nanosized
Tris((4-carboxyl)-phenylduryl)amine and 4,4′-Bipyridine Ligands for Gas Storage and Separation. Crystal
Growth and Design, 2012, 12, 2468-2471. | 1.4 | 38 | | 377 | Charge Matching on Designing Neutral Cadmium–Lanthanide–Organic Open Frameworks for Luminescence Sensing. Chemistry - an Asian Journal, 2012, 7, 1069-1073. | 1.7 | 95 | | 378 | Controlling State of Breathing of Two Isoreticular Microporous Metal–Organic Frameworks with Triazole Homologues. Chemistry - A European Journal, 2012, 18, 10525-10529. | 1.7 | 30 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 379 | Temperatureâ€/Pressureâ€Dependent Selective Separation of CO ₂ or Benzene in a Chiral Metal–Organic Framework Material. ChemSusChem, 2012, 5, 1597-1601. | 3.6 | 26 | | 380 | Induction in urothermal synthesis of chiral porous materials from achiral precursors. Chemical Communications, 2011, 47, 4950. | 2.2 | 80 | | 381 | A ligand-conformation driving chiral generation and symmetry-breaking crystallization of a zinc(ii) organoarsonate. Chemical Communications, 2011, 47, 8862. | 2.2 | 44 | | 382 | Surface modification of
polyoxometalate host–guest supramolecular architectures: from metal–organic pseudorotaxane framework to molecular box. Chemical Communications, 2011, 47, 4150. | 2.2 | 62 | | 383 | Cul Cluster-Based Organic Frameworks with Unusual 4- and 5-Connected Topologies. Crystal Growth and Design, 2011, 11, 29-32. | 1.4 | 69 | | 384 | A series of three-dimensional lanthanide(iii) coordination polymers of 2,5-dihydroxy-1,4-benzenedicarboxylic acid based on dinuclear lanthanide units. CrystEngComm, 2011, 13, 4981. | 1.3 | 37 | | 385 | Pore partition effect on gas sorption properties of an anionic metal–organic framework with exposed Cu2+ coordination sites. Chemical Communications, 2011, 47, 10647. | 2.2 | 139 | | 386 | Role of molar-ratio, temperature and solvent on the Zn/Cd 1,2,4-triazolate system with novel topological architectures. CrystEngComm, 2011, 13, 3536. | 1.3 | 89 | | 387 | A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake.
Chemical Communications, 2011, 47, 5828. | 2.2 | 102 | | 388 | Interrupted Zeolite LTA and ATN-Type Boron Imidazolate Frameworks. Journal of the American Chemical Society, 2011, 133, 11884-11887. | 6.6 | 134 | | 389 | Serine-Based Homochiral Nanoporous Frameworks for Selective CO ₂ Uptake. Inorganic Chemistry, 2011, 50, 11527-11531. | 1.9 | 39 | | 390 | Dynamic microporous indium(<scp>iii</scp>)-4,4′-oxybis(benzoate) framework with high selectivity for the adsorption of CO ₂ over N ₂ . Chemical Communications, 2011, 47, 770-772. | 2.2 | 87 | | 391 | Hybrid Zeolitic Imidazolate Frameworks with Catalytically Active TO ₄ Building Blocks. Angewandte Chemie - International Edition, 2011, 50, 450-453. | 7.2 | 347 | | 392 | Rare 5-connected BN topology in homochiral Cd(II) camphorate with 2-(4-pyridyl)benzimidazole. Inorganic Chemistry Communication, 2011, 14, 228-230. | 1.8 | 8 | | 393 | Urothermal synthesis of a photoluminescent zinc coordination polymer. Inorganic Chemistry Communication, 2011, 14, 355-357. | 1.8 | 9 | | 394 | A new open framework material based on designed semi-rigid T-shaped tricarboxylate ligand. Inorganic Chemistry Communication, 2011, 14, 986-989. | 1.8 | 56 | | 395 | Hydrogen-bond-directed self-assembly of a novel 2D→3D polythreading with finite components based on rigid ligand. Journal of Molecular Structure, 2011, 994, 1-5. | 1.8 | 12 | | 396 | Canted antiferromagnetic behaviours in isostructural Co(ii) and Ni(ii) frameworks with helical lvt topology. CrystEngComm, 2010, 12, 2938. | 1.3 | 22 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 397 | Hydrogen-bonded boron imidazolate frameworks. Dalton Transactions, 2010, 39, 1702-1704. | 1.6 | 14 | | 398 | A Tale of Three Carboxylates: Cooperative Asymmetric Crystallization of a Threeâ€Dimensional Microporous Framework from Achiral Precursors. Angewandte Chemie - International Edition, 2010, 49, 1267-1270. | 7.2 | 172 | | 399 | Urothermal Synthesis of Crystalline Porous Materials. Angewandte Chemie - International Edition, 2010, 49, 8876-8879. | 7.2 | 179 | | 400 | Syntheses, crystal structures and properties of a series of 3D cadmium coordination polymers with different topologies. Inorganica Chimica Acta, 2010, 363, 1727-1734. | 1.2 | 31 | | 401 | Structural diversity and distinct photoluminescent properties of two new lanthanide-copper (I) frameworks based on mixed isonicontinate/oxalate ligands. Inorganic Chemistry Communication, 2010, 13, 938-940. | 1.8 | 8 | | 402 | Doubly interpenetrated hms-type metal organic framework formed by perfect face-to-face π…π stacking interactions. Inorganic Chemistry Communication, 2010, 13, 1429-1431. | 1.8 | 12 | | 403 | Multifunctional Homochiral Lanthanide Camphorates with Mixed Achiral Terephthalate Ligands.
Inorganic Chemistry, 2010, 49, 9257-9264. | 1.9 | 82 | | 404 | Zinc(II)-boron(III)-imidazolate framework (ZBIF) with unusual pentagonal channels prepared from deep eutectic solvent. Dalton Transactions, 2010, 39, 697-699. | 1.6 | 50 | | 405 | Formation of Aminoxy and Oxo Complexes from the Reaction of Nb(NMe ₂) ₅ with O ₂ and the Crystal Structure of Nb(NEt ₂) ₅ . Inorganic Chemistry, 2010, 49, 4017-4022. | 1.9 | 21 | | 406 | Visible Concentration-Sensitive Structural Transformation. Crystal Growth and Design, 2010, 10, 1464-1467. | 1.4 | 16 | | 407 | The first anionic four-connected boron imidazolate framework. Dalton Transactions, 2010, 39, 2487. | 1.6 | 16 | | 408 | New mimic of zeolite: heterometallic organic host framework accommodating inorganic cations. Chemical Communications, 2010, 46, 3182. | 2.2 | 40 | | 409 | Spontaneous asymmetrical crystallization of a three-dimensional diamondoid framework material from achiral precursors. Chemical Communications, 2010, 46, 1449. | 2.2 | 49 | | 410 | Breaking the Mirror: pHâ€Controlled Chirality Generation from a <i>meso</i> Ligand to a Racemic Ligand. Chemistry - A European Journal, 2009, 15, 989-1000. | 1.7 | 67 | | 411 | Zeolitic Boron Imidazolate Frameworks. Angewandte Chemie - International Edition, 2009, 48, 2542-2545. | 7.2 | 224 | | 412 | Versatile Structureâ€Directing Roles of Deepâ€Eutectic Solvents and Their Implication in the Generation of Porosity and Open Metal Sites for Gas Storage. Angewandte Chemie - International Edition, 2009, 48, 3486-3490. | 7.2 | 227 | | 413 | Nucleotideâ€Catalyzed Conversion of Racemic Zeoliteâ€Type Zincophosphate into Enantioenriched Crystals. Angewandte Chemie - International Edition, 2009, 48, 6049-6051. | 7.2 | 54 | | 414 | Variable Lithium Coordination Modes in Two- and Three-Dimensional Lithium Boron Imidazolate Frameworks. Chemistry of Materials, 2009, 21, 3830-3837. | 3.2 | 54 | | # | Article | IF | Citations | |-----|--|------------|---------------------| | 415 | Zeolite RHO-Type Net with the Lightest Elements. Journal of the American Chemical Society, 2009, 131, 6111-6113. | 6.6 | 161 | | 416 | Multiroute Synthesis of Porous Anionic Frameworks and Size-Tunable Extraframework Organic Cation-Controlled Gas Sorption Properties. Journal of the American Chemical Society, 2009, 131, 16027-16029. | 6.6 | 247 | | 417 | Temperature-Controlled Syntheses of Substituted 1,2,4-Triazolelead(II) Complexes: Active Lone Pair and Nâ°'H···X (X = Cl, Br, I) Hydrogen Bonds. Inorganic Chemistry, 2009, 48, 9992-9994. | 1.9 | 21 | | 418 | In Situ Obtained Cu(II) Compound with Coexistence of Polycatenation and Polythreading. Crystal Growth and Design, 2009, 9, 20-23. | 1.4 | 40 | | 419 | Absolute helicity induction in three-dimensional homochiral frameworks. Chemical Communications, 2009, , 206-208. | 2.2 | 96 | | 420 | Synthesis, Structure, and Luminescent Properties of Hybrid Inorganicâ-'Organic Framework Materials Formed by Lead Aromatic Carboxylates: Inorganic Connectivity Variation from 0D to 3D. Inorganic Chemistry, 2009, 48, 6517-6525. | 1.9 | 204 | | 421 | Protonated 3-amino-1,2,4-triazole templated luminescent lanthanide isophthalates with a rare (3,6)-connected topology. CrystEngComm, 2009, 11, 2734. | 1.3 | 31 | | 422 | Unusual parallel entanglement of metal–organic 2D frameworks with coexistence of polyrotaxane, polycatenane and interdigitation. CrystEngComm, 2009, 11, 1030. | 1.3 | 67 | | 423 | Novel (3,6)-connected network and (4,6)-connected framework in two copper(II) and cadmium(II) complexes of flexible (2S,3S,4R,5R)-tetrahydrofurantetracarboxylic acid: synthesis, structure, thermostability, and luminescence studies. CrystEngComm, 2009, 11, 1934. | 1.3 | 22 | | 424 | Ag(I)-Mediated In situ Dehydrogenative Coupling of 3-Amino-1,2,4-triazole into 3,3′-Azobis(1,2,4-triazole) in Cd(II) Coordination Polymers. Inorganic Chemistry, 2009, 48, 10859-10861. | 1.9 | 18 | | 425 | Conformation Preference of a Flexible Cyclohexanetetracarboxylate Ligand in Three New Metal-Organic Frameworks: Structures, Magnetic and Luminescent Properties. Inorganic Chemistry, 2009, 48, 7194-7200. | 1.9 | 55 | | 426 | Supramolecular Isomerism and Various Chain/Layer Substructures in Silver(I) Compounds: Syntheses, Structures, and Luminescent Properties. Crystal Growth and Design, 2009, 9, 4884-4896. | 1.4 | 93 | | 427 | Spontaneous Resolution of Racemic Camphorates in the Formation of Three-Dimensional Metalâ^'Organic Frameworks. Inorganic Chemistry, 2009, 48, 6356-6358. | 1.9 | 47 | | 428 | Neutral and reduced Roussin's red salt ester [Fe $<$ sub $>$ 2 $<$ /sub $>$ (\hat{l} / 4 -RS) $<$ sub $>$ 2 $<$ /sub $>$ (NO) $<$ sub $>$ 4 $<$ /sub $>$] (R) Tj E spectroscopic, electrochemical and density functional theoretical investigations. Dalton Transactions, 2009, 777-786. | TQq0 0 0 1 | rgBT /Overloc
48 | | 429 | Configuration determination of flexible tetracarboxylate ligands in two supramolecular structures. CrystEngComm, 2009, 11, 1201. | 1.3 | 18 | | 430 | A New Zeolitic Topology with Sixteenâ€Membered Ring and Multidimensional Large Pore Channels.
Chemistry - A European Journal, 2008, 14, 7771-7773. | 1.7 | 76 | | 431 | Multiple Functions of Ionic Liquids in the Synthesis of Threeâ€Dimensional Lowâ€Connectivity
Homochiral and Achiral Frameworks. Angewandte Chemie - International Edition, 2008, 47, 5434-5437. | 7.2 | 187 | | 432 | A luminescent Cu(I) complex ligated by 1,3-bis(4-pyridyl)trisulfane generated in situ by the coupling of pyridine-4-thiol. Inorganic Chemistry Communication, 2008, 11, 164-166. | 1.8 | 18 | | # | Article | IF | CITATIONS | |-----
--|-----|-----------| | 433 | Integrated Molecular Chirality, Absolute Helicity, and Intrinsic Chiral Topology in Three-Dimensional Open-Framework Materials. Journal of the American Chemical Society, 2008, 130, 17246-17247. | 6.6 | 196 | | 434 | Homochiral Crystallization of Microporous Framework Materials from Achiral Precursors by Chiral Catalysis. Journal of the American Chemical Society, 2008, 130, 12882-12883. | 6.6 | 319 | | 435 | New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands. Chemistry of Materials, 2008, 20, 7377-7382. | 3.2 | 102 | | 436 | Controlled generation of acentric and homochiral coordination compounds from a versatile asymmetric ligand 4-(1H-1,2,4-triazol-3-yl)-4H-1,2,4-triazole. Chemical Communications, 2008, , 4159. | 2.2 | 16 | | 437 | Anion-Induced Coordination Versatility of 1H-1,2,4-Triazole-3-thiol (HtrzSH) Affording a New Hybrid System of Cadmium(II) Polymers: Synthesis, Structure, and Luminescent Properties. Crystal Growth and Design, 2008, 8, 2562-2573. | 1.4 | 74 | | 438 | Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metalâ^'Organic Framework Materials Based on Zinc/Lead Isophthalates. Inorganic Chemistry, 2008, 47, 8286-8293. | 1.9 | 132 | | 439 | Ionothermal Synthesis of Homochiral Framework with Acetate-Pillared Cobaltâ^'Camphorate
Architecture. Inorganic Chemistry, 2008, 47, 5567-5569. | 1.9 | 85 | | 440 | Nanosized lanthanide oxide rods in I1O3 hybrid organic–inorganic frameworks involving in situ ligand synthesis. CrystEngComm, 2008, 10, 1088. | 1.3 | 23 | | 441 | Homochiral moganite-type metal–organic framework based on unusual (Ag2Cl)n skeletons.
CrystEngComm, 2008, 10, 655. | 1.3 | 20 | | 442 | Synthesis, Structure, and Physical Properties of a New Anions-Controlled Cd(II)-Guanazole (3,5-Diamino-1,2,4-triazole) Hybrid Family. Inorganic Chemistry, 2008, 47, 4861-4876. | 1.9 | 107 | | 443 | Novel Copper(I)â^ and Copper(II)â^ Guanazolate Complexes: Structure, Network Topologies, Photoluminescence, and Magnetic Properties. Crystal Growth and Design, 2008, 8, 3735-3744. | 1.4 | 42 | | 444 | Temperature dependent charge distribution in three-dimensional homochiral cadmium camphorates. Chemical Communications, 2008, , 444-446. | 2.2 | 94 | | 445 | Organically templated metal–organic framework with 2-fold interpenetrated {33.59.63}-lcy net. Chemical Communications, 2008, , 2532. | 2.2 | 74 | | 446 | Single- or double-stranded helices-sustained molecular bilayer architecture. CrystEngComm, 2008, 10, 1345. | 1.3 | 38 | | 447 | Three-Dimensional Open Framework Built from Cuâ^'S Icosahedral Clusters and Its Photocatalytic Property. Journal of the American Chemical Society, 2008, 130, 15238-15239. | 6.6 | 120 | | 448 | A new enantiopure unsaturated dicarboxylate as a 4-connected unit in a flexible homochiral PtS-type framework. Chemical Communications, 2008, , 1756. | 2.2 | 24 | | 449 | Three-Dimensional Homochiral Transition-Metal Camphorate Architectures Directed by a Flexible Auxiliary Ligand. Inorganic Chemistry, 2008, 47, 3495-3497. | 1.9 | 106 | | 450 | In Situ Synthesis of Tetradentate Dye for Construction of Three-Dimensional Homochiral Phosphor. Chemistry of Materials, 2008, 20, 5457-5459. | 3.2 | 63 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 451 | Cooperative Self-Assembly of Chiral <scp>l</scp> -Malate and Achiral Succinate in the Formation of a Three-Dimensional Homochiral Framework. Inorganic Chemistry, 2008, 47, 8607-8609. | 1.9 | 29 | | 452 | Comparative Study of Homochiral and Racemic Chiral Metal-Organic Frameworks Built from Camphoric Acid. Chemistry of Materials, 2007, 19, 5083-5089. | 3.2 | 166 | | 453 | Manganese and Magnesium Homochiral Materials: Decoration of Honeycomb Channels with Homochiral Chains. Journal of the American Chemical Society, 2007, 129, 14168-14169. | 6.6 | 180 | | 454 | Chiral Semiconductor Frameworks from Cadmium Sulfide Clusters. Journal of the American Chemical Society, 2007, 129, 8412-8413. | 6.6 | 107 | | 455 | Polycatenated 3-connected hydrogen-bonding bilayer stabilized by argentophilic interactions. CrystEngComm, 2007, 9, 636. | 1.3 | 31 | | 456 | One-pot synthesis of two isomeric zinc complexes with unusual polycatenation motifs. CrystEngComm, 2007, 9, 390. | 1.3 | 31 | | 457 | Amine-Controlled Assembly of Metalâ^'Sulfite Architecture from 1D Chains to 3D Framework. Inorganic Chemistry, 2007, 46, 6283-6290. | 1.9 | 33 | | 458 | New Coordination Motifs of Melamine Directed by Nâ^'H··X (X = Cl or Br) Hydrogen Bonds. Inorganic Chemistry, 2007, 46, 5838-5840. | 1.9 | 39 | | 459 | Cadmiumâ^'Porphyrin Coordination Networks: Rich Coordination Modes and Three-Dimensional Four-Connected CdSO4and (3,5)-Connected hms Nets. Crystal Growth and Design, 2007, 7, 2576-2581. | 1.4 | 54 | | 460 | Chiralization of Diamond Nets: Stretchable Helices and Chiral and Achiral Nets with Nearly Identical Unit Cells. Angewandte Chemie - International Edition, 2007, 46, 6115-6118. | 7.2 | 135 | | 461 | Organic Cation and Chiral Anion Templated 3D Homochiral Openâ€Framework Materials with Unusual Squareâ€Planar {M ₄ (OH)} Units. Angewandte Chemie - International Edition, 2007, 46, 8388-8391. | 7.2 | 143 | | 462 | Magnetic investigation of two helical frameworks derived from mixed ligands. Inorganica Chimica Acta, 2007, 360, 3525-3532. | 1.2 | 14 | | 463 | Twofold parallely interpenetrated 2D polymers of d10 zinc and cadmium based on mixed nicotinate/isonicotinate ligands. Journal of Molecular Structure, 2007, 827, 126-129. | 1.8 | 13 | | 464 | A Polar Luminescent Zn Polymer Containing an Unusual Noninterpenetrated utp Net. Inorganic Chemistry, 2006, 45, 3161-3163. | 1.9 | 121 | | 465 | Two Cobalt(II) 5-Aminoisophthalate Complexes and Their Stable Supramolecular Microporous Frameworks. Inorganic Chemistry, 2006, 45, 6276-6281. | 1.9 | 32 | | 466 | A rare twofold interpenetrated cds topology in a Zn-organic polymer [Zn2(BDC)(BPP)Cl2]n. Inorganic Chemistry Communication, 2006, 9, 449-451. | 1.8 | 22 | | 467 | Syntheses, Structures and Characterisation of Two Cull Polymers with 8-Connected Topologies Based on Highly Connected SBUs. European Journal of Inorganic Chemistry, 2006, 2006, 2253-2258. | 1.0 | 46 | | 468 | A new polar supramolecular 3D framework [Zn(pyz)(H2O)4]pht. Journal of Molecular Structure, 2005, 750, 39-43. | 1.8 | 17 | | # | Article | IF | CITATIONS | |-----|--|------------------|---------------------| | 469 | Synthesis, structure, and fluorescence of two cadmium(II)-citrate coordination polymers with different coordination architectures. Journal of Molecular Structure, 2005, 740, 223-227. | 1.8 | 15 | | 470 | Rare 4.82 net in a fluorescent Cd-organic framework. Inorganic Chemistry Communication, 2005, 8, 722-724. | 1.8 | 15 | | 471 | A fluorescent Zn–benzotriazole 2D polymer with (6,3) topology. Inorganic Chemistry Communication, 2005, 8, 828-830. | 1.8 | 30 | | 472 | Three Copper(II) Coordination Polymers Constructed by Both Rigid and Flexible Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 3053-3057. | 0.6 | 20 | | 473 | A 3-D Noninterpenetrating Diamondoid Network of a Decanuclear Copper(I) Complex. Inorganic Chemistry, 2005, 44, 3386-3388. | 1.9 | 83 | | 474 | A novel 3D framework generated by unusual pillared 2D bilayer motifs. New Journal of Chemistry, 2005, 29, 421. | 1.4 | 31 | | 475 | A twisting chiral â€~dense' 75.9 net, incorporating a helical sub-structure. CrystEngComm, 2005, 7, 177-178. | 1.3 | 32 | | 476 | Syntheses and Characterizations of Two Novel Silver(I) Complexes Constructed by Oxydipropionitrile Ligand. Crystal Growth and Design, 2005, 5, 73-75. | 1.4 | 9 | | 477 | Paratactic Assembly of Two Distinct Units into a Unique 3D Architecture. Crystal Growth and Design, 2005, 5, 1313-1315. | 1.4 | 51 | | 478 | A rare metal–organic 3D architecture with a pseudo-primitive cubic topology with double edges constructed from a 12-connected SBU. New Journal of Chemistry, 2005, 29, 995. | 1.4 | 62 | | 479 | A Simultaneous Redox, Alkylation, Self-Assembly Reaction under Solvothermal Conditions Afforded a Luminescent Copper(I) Chain Polymer Constructed of Cu3I4- and EtS-4-C5H4N+Et Components (Et =) Tj ETQq1 1 | % 7 84314 | ∤ zgB T/Over | | 480 | Syntheses and Crystal Structures of Two Metal Succinates Modified by Bipyridines. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 2731-2735. | 0.6 | 16 | | 481 | Syntheses, structures and photoluminescent properties of 1D, 2D, 3D silver (I) coordination polymers with flexible long-chain dinitriles and tetranitriles. Polyhedron, 2004, 23, 2209-2215. | 1.0 | 16 | | 482 | Syntheses and structures of two novel Ag(I) complexes: $[1\frac{1}{4}3-2-(4-pyridyl))$ ethanesulfonato-N,O,Oâ \in 2]-aqua-silver(I) and melamine-[2-(4-pyridyl)) ethanesulfonato-N]-silver(I). Journal of Molecular Structure, 2004, 697, 185-189. | 1.8 | 18 | | 483 | 1D chain structure, NLO and luminescence properties of. Inorganic Chemistry Communication, 2004, 7, 1139-1141. | 1.8 | 66 | | 484 | Chemical Communications, 2004, , 1046. | 2.2 | 58 | | 485 | Co-chelation of a scorpion-shaped carboxylate ligand and phenanthroline lead to a 2-D interpenetratively tubular
architecture. CrystEngComm, 2004, 6, 315. | 1.3 | 37 | | 486 | Hydrothermal Syntheses, Crystal Structures, and Properties of a Novel Class of 3,3 ,4,4 -Benzophenone-tetracarboxylate (BPTC) Polymers. Inorganic Chemistry, 2004, 43, 8085-8091. | 1.9 | 153 | | # | Article | lF | CITATIONS | |-----|---|-----|-----------| | 487 | Interweaving 3D Network with Double Helical Tubes Filled by 1D Coordination Polymer Chains. Inorganic Chemistry, 2004, 43, 6525-6527. | 1.9 | 85 | | 488 | Designable Assembly of Atomically Precise Al4O4 Cubane Supported Mesoporous Heterometallic Architectures. Chemical Science, 0, , . | 3.7 | 3 |