
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8795209/publications.pdf Version: 2024-02-01

ΜΑΡΤΙΝ Ο ΝΑΜΙΝ

#	Article	IF	CITATIONS
1	Moxidectin and Ivermectin Inhibit SARS-CoV-2 Replication in Vero E6 Cells but Not in Human Primary Bronchial Epithelial Cells. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0154321.	3.2	19
2	Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Research, 2022, 50, D129-D140.	14.5	78
3	The discovAIR project: a roadmap towards the Human Lung Cell Atlas. European Respiratory Journal, 2022, 60, 2102057.	6.7	15
4	Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future. , 2022, 237, 108115.		9
5	Cellâ€type <scp>eQTL</scp> deconvolution of bronchial epithelium through integration of singleâ€cell and bulk <scp>RNA</scp> â€seq. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3663-3666.	5.7	Ο
6	Shared DNA methylation signatures in childhood allergy: The MeDALL study. Journal of Allergy and Clinical Immunology, 2021, 147, 1031-1040.	2.9	24
7	ILâ€1RL1a serum levels and <i>IL1RL1</i> SNPs in the prediction of food allergy. Clinical and Experimental Allergy, 2021, 51, 614-619.	2.9	5
8	Periostin: contributor to abnormal airway epithelial function in asthma?. European Respiratory Journal, 2021, 57, 2001286.	6.7	27
9	Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Science Immunology, 2021, 6, .	11.9	79
10	Comparison of genome-wide gene expression profiling by RNA Sequencing <i>versus</i> microarray in bronchial biopsies of COPD patients before and after inhaled corticosteroid treatment: does it provide new insights?. ERJ Open Research, 2021, 7, 00104-2021.	2.6	2
11	The Human Lung Cell Atlas: a transformational resource for cells of the respiratory system. , 2021, , 158-174.		3
12	SARS-CoV-2-specific hotspots in virus–host interaction networks. Nature Immunology, 2021, 22, 806-808.	14.5	5
13	Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility?. Redox Biology, 2021, 43, 101995.	9.0	25
14	Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation, 2021, 144, 286-302.	1.6	181
15	Resveratrol and Pterostilbene Inhibit SARS-CoV-2 Replication in Air–Liquid Interface Cultured Human Primary Bronchial Epithelial Cells. Viruses, 2021, 13, 1335.	3.3	47
16	Inhibition of β-Catenin/CREB Binding Protein Signaling Attenuates House Dust Mite-Induced Goblet Cell Metaplasia in Mice. Frontiers in Physiology, 2021, 12, 690531.	2.8	2
17	Phenotypic and functional translation of IL33 genetics in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 144-157.	2.9	29
18	3TR: a pan-European cross-disease research consortium aimed at improving personalised biological treatment of asthma and COPD. European Respiratory Journal, 2021, 58, 2102168.	6.7	8

#	Article	IF	CITATIONS
19	Methods for Experimental Allergen Immunotherapy: Subcutaneous and Sublingual Desensitization in Mouse Models of Allergic Asthma. Methods in Molecular Biology, 2021, 2223, 295-335.	0.9	4
20	Nasal gene expression changes with inhaled corticosteroid treatment in asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 191-194.	5.7	4
21	Differential DNA methylation in bronchial biopsies between persistent asthma and asthma in remission. European Respiratory Journal, 2020, 55, 1901280.	6.7	29
22	<i>IL1RL1</i> gene variations are associated with asthma exacerbations in children and adolescents using inhaled corticosteroids. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 984-989.	5.7	14
23	High dose vitamin D3 empowers effects of subcutaneous immunotherapy in a grass pollen-driven mouse model of asthma. Scientific Reports, 2020, 10, 20876.	3.3	5
24	Optical Coherence Tomography Intensity Correlates with Extracellular Matrix Components in the Airway Wall. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 762-766.	5.6	11
25	A Novel Role for Bronchial MicroRNAs and Long Noncoding RNAs in Asthma Remission. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 614-618.	5.6	13
26	1,25(OH)2VitD3 supplementation enhances suppression of grass pollen-induced allergic asthma by subcutaneous and sublingual immunotherapy in a mouse model. Scientific Reports, 2020, 10, 8960.	3.3	5
27	Epithelial cell dysfunction, a major driver of asthma development. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1902-1917.	5.7	151
28	Inhibition of β atenin/CBP signalling improves airway epithelial barrier function and suppresses CCL20 release. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1786-1789.	5.7	3
29	Nasal DNA methylation profiling of asthma and rhinitis. Journal of Allergy and Clinical Immunology, 2020, 145, 1655-1663.	2.9	56
30	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	28.9	1,956
31	Smooth-muscle-derived WNT5A augments allergen-induced airway remodelling and Th2 type inflammation. Scientific Reports, 2020, 10, 6754.	3.3	14
32	Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight, 2020, 5, .	5.0	26
33	Can <scp>ACE</scp> 2 expression explain <scp>SARS</scp> â€CoVâ€2 infection of the respiratory epithelia in <scp>COVID</scp> â€19?. Molecular Systems Biology, 2020, 16, e9841.	7.2	27
34	The single-cell eQTLGen consortium. ELife, 2020, 9, .	6.0	150
35	A cellular census of human lungs identifies novel cell states in health and in asthma. Nature Medicine, 2019, 25, 1153-1163.	30.7	631
36	Subcutaneous immunotherapy using modified Phl p5aâ€derived peptides efficiently alleviates allergic asthma in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2495-2498.	5.7	11

#	Article	IF	CITATIONS
37	A review on the pathophysiology of asthma remission. , 2019, 201, 8-24.		36
38	The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 31-41.	2.9	178
39	Applying the CAMP trial asthma remission prediction model to the Dutch asthma remission studies. Journal of Allergy and Clinical Immunology, 2019, 143, 1973-1975.	2.9	3
40	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	7.0	57
41	Assessing small airways dysfunction in asthma, asthma remission and healthy controls using particles in exhaled air. ERJ Open Research, 2019, 5, 00202-2019.	2.6	2
42	DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respiratory Medicine,the, 2018, 6, 379-388.	10.7	170
43	Subcutaneous immunotherapy with purified Der p1 and 2 suppresses type 2 immunity in a murine asthma model. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 862-874.	5.7	43
44	Genetic regulation of <i>IL1RL1</i> methylation and IL1RL1-a protein levels in asthma. European Respiratory Journal, 2018, 51, 1701377.	6.7	24
45	Subcutaneous immunotherapy suppresses Th2 inflammation and induces neutralizing antibodies, but sublingual immunotherapy suppresses airway hyperresponsiveness in grass pollen mouse models for allergic asthma. Clinical and Experimental Allergy, 2018, 48, 1035-1049.	2.9	13
46	Cigarette smoke exposure decreases CFLAR expression in the bronchial epithelium, augmenting susceptibility for lung epithelial cell death and DAMP release. Scientific Reports, 2018, 8, 12426.	3.3	31
47	Subcutaneous and Sublingual Immunotherapy in a Mouse Model of Allergic Asthma. Methods in Molecular Biology, 2017, 1559, 137-168.	0.9	9
48	Mechanisms of the Development of Allergy (MeDALL): Introducing novel concepts in allergy phenotypes. Journal of Allergy and Clinical Immunology, 2017, 139, 388-399.	2.9	145
49	Predictive value of serum sST2 in preschool wheezers for development of asthma with high FeNO. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1811-1815.	5.7	7
50	Genetic variance is associated with susceptibility for cigarette smoke-induced DAMP release in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L559-L580.	2.9	15
51	Increased neutrophil expression of pattern recognition receptors during <scp>COPD</scp> exacerbations. Respirology, 2017, 22, 401-404.	2.3	24
52	The Human Cell Atlas. ELife, 2017, 6, .	6.0	1,547
53	Computational analysis of multimorbidity between asthma, eczema and rhinitis. PLoS ONE, 2017, 12, e0179125.	2.5	33
54	The challenge of measuring <scp>IL</scp> â€33 in serum using commercial <scp>ELISA</scp> : lessons from asthma. Clinical and Experimental Allergy, 2016, 46, 884-887.	2.9	31

#	Article	IF	CITATIONS
55	Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L881-L892.	2.9	58
56	Paving the way of systems biology and precision medicine in allergic diseases: the Me <scp>DALL</scp> success story. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1513-1525.	5.7	77
57	Inhibition of Pim1 kinase, new therapeutic approach in virus-induced asthma exacerbations. European Respiratory Journal, 2016, 47, 783-791.	6.7	10
58	Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L377-L386.	2.9	130
59	Protocadherin-1 Localization and Cell-Adhesion Function in Airway Epithelial Cells in Asthma. PLoS ONE, 2016, 11, e0163967.	2.5	16
60	Are allergic multimorbidities and IgE polysensitization associated with the persistence or reâ€occurrence of foetal type 2 signalling? The <scp>M</scp> e <scp>DALL</scp> hypothesis. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1062-1078.	5.7	88
61	Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L725-L735.	2.9	21
62	Cigarette Smoke–Induced Damage-Associated Molecular Pattern Release from Necrotic Neutrophils Triggers Proinflammatory Mediator Release. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 554-562.	2.9	90
63	Basophil activation test in mastocytosis patients with and without wasp venom allergy. , 2015, 88, 5-5.		0
64	Genetic variation associates with susceptibility for cigarette smoke-induced neutrophilia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L693-L709.	2.9	14
65	Inhibition of Pim1 kinase reduces viral replication in primary bronchial epithelial cells. European Respiratory Journal, 2015, 45, 1745-1748.	6.7	14
66	Increased serum levels of LL37, HMGB1 and S100A9 during exacerbation in COPD patients. European Respiratory Journal, 2015, 45, 1482-1485.	6.7	49
67	The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders. Molecular Immunology, 2015, 63, 80-85.	2.2	103
68	A specific DAMP profile identifies susceptibility to smoke-induced airway inflammation. European Respiratory Journal, 2014, 43, 1183-1186.	6.7	17
69	Basophil activation test in the diagnosis and monitoring of mastocytosis patients with wasp venom allergy on immunotherapy. , 2014, 86, 183-190.		14
70	Protocadherin-1: epithelial barrier dysfunction in asthma and eczema. European Respiratory Journal, 2014, 43, 671-674.	6.7	12
71	Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clinical and Experimental Allergy, 2014, 44, 620-630.	2.9	92
72	DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunology, 2014, 7, 215-226.	6.0	136

#	Article	IF	CITATIONS
73	Protease-Activated Receptor-2 Activation Contributes to House Dust Mite-Induced IgE Responses in Mice. PLoS ONE, 2014, 9, e91206.	2.5	35
74	Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study. PLoS ONE, 2014, 9, e91621.	2.5	25
75	Mouse Protocadherin-1 Gene Expression Is Regulated by Cigarette Smoke Exposure In Vivo. PLoS ONE, 2014, 9, e98197.	2.5	11
76	Decoding asthma: Translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. Journal of Allergy and Clinical Immunology, 2013, 131, 856-865.e9.	2.9	171
77	Muscarinic receptor subtype-specific effects on cigarette smoke-induced inflammation in mice. European Respiratory Journal, 2013, 42, 1677-1688.	6.7	44
78	Pooling Birth Cohorts in Allergy and Asthma: European Union-Funded Initiatives – A MeDALL, CHICOS, ENRIECO, and GA2LEN Joint Paper. International Archives of Allergy and Immunology, 2013, 161, 1-10.	2.1	54
79	House dust miteâ€induced calcium signaling instigates epithelial barrier dysfunction and <scp>CCL</scp> 20 production. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1117-1125.	5.7	54
80	Cytotoxic T lymphocyte antigen 4-immunoglobulin G is a potent adjuvant for experimental allergen immunotherapy. Clinical and Experimental Immunology, 2013, 172, 113-120.	2.6	13
81	TLR-2 Activation Induces Regulatory T Cells and Long-Term Suppression of Asthma Manifestations in Mice. PLoS ONE, 2013, 8, e55307.	2.5	45
82	Characterization of protocadherinâ€1 expression in primary bronchial epithelial cells: association with epithelial cell differentiation. FASEB Journal, 2012, 26, 439-448.	0.5	34
83	The composition of house dust mite is critical for mucosal barrier dysfunction and allergic sensitisation. Thorax, 2012, 67, 488-495.	5.6	136
84	Contribution of regulatory <scp>T</scp> cells to alleviation of experimental allergic asthma after specific immunotherapy. Clinical and Experimental Allergy, 2012, 42, 1519-1528.	2.9	41
85	Understanding the complexity of IgE-related phenotypes from childhood to young adulthood: A Mechanisms of the Development of Allergy (MeDALL) Seminar. Journal of Allergy and Clinical Immunology, 2012, 129, 943-954.e4.	2.9	68
86	Severe Chronic Allergic (and Related) Diseases: A Uniform Approach – A MeDALL – GA ² LEN – ARIA Position Paper. International Archives of Allergy and Immunology, 2012, 158, 216-231.	2.1	83
87	E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends in Immunology, 2011, 32, 248-255.	6.8	172
88	Recent advances in the epigenetics and genomics of asthma. Current Opinion in Allergy and Clinical Immunology, 2011, 11, 414-419.	2.3	35
89	Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 648-657.	5.7	21
90	MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 596-604.	5.7	146

#	Article	IF	CITATIONS
91	Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma. Clinical and Experimental Immunology, 2011, 166, 80-86.	2.6	30
92	For better or for worse: the role of Pim oncogenes in tumorigenesis. Nature Reviews Cancer, 2011, 11, 23-34.	28.4	423
93	Flow cytometric analysis of cytokine expression in short-term allergen-stimulated T cells mirrors the phenotype of proliferating T cells in long-term cultures. Journal of Immunological Methods, 2011, 371, 114-121.	1.4	9
94	Identification of the <i>Mhc</i> Region as an Asthma Susceptibility Locus in Recombinant Congenic Mice. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 295-303.	2.9	5
95	Cryopreservation does not alter the frequency of regulatory T cells in peripheral blood mononuclear cells. Journal of Immunological Methods, 2010, 353, 138-140.	1.4	30
96	Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways. Oncogene, 2010, 29, 93-104.	5.9	37
97	Suppression of Th2-Driven Airway Inflammation by Allergen Immunotherapy Is Independent of B Cell and Ig Responses in Mice. Journal of Immunology, 2010, 185, 3857-3865.	0.8	29
98	Pim3 negatively regulates glucose-stimulated insulin secretion. Islets, 2010, 2, 308-317.	1.8	18
99	GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma. Respiratory Research, 2009, 10, 93.	3.6	37
100	Genetically Engineered Mouse Models of Prostate Cancer. European Urology Supplements, 2008, 7, 566-575.	0.1	4
101	p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature, 2007, 448, 943-946.	27.8	237
102	Targeting PIM Kinases Impairs Survival of Hematopoietic Cells Transformed by Kinase Inhibitor–Sensitive and Kinase Inhibitor–Resistant Forms of Fms-Like Tyrosine Kinase 3 and BCR/ABL. Cancer Research, 2006, 66, 3828-3835.	0.9	97
103	Frat is dispensable for canonical Wnt signaling in mammals. Genes and Development, 2005, 19, 425-430.	5.9	61
104	Mice Deficient for All PIM Kinases Display Reduced Body Size and Impaired Responses to Hematopoietic Growth Factors. Molecular and Cellular Biology, 2004, 24, 6104-6115.	2.3	286
105	Pim serine/threonine kinases regulate the stability of Socs-1 protein. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2175-2180.	7.1	167
106	Cutting Edge: Suppressor of Cytokine Signaling 3 Inhibits Activation of NFATp. Journal of Immunology, 2002, 168, 4277-4281.	0.8	64
107	Enforced Expression of GATA-3 During T Cell Development Inhibits Maturation of CD8 Single-Positive Cells and Induces Thymic Lymphoma in Transgenic Mice. Journal of Immunology, 2001, 167, 715-723.	0.8	82
108	Enforced Expression of GATA-3 in Transgenic Mice Inhibits Th1 Differentiation and Induces the Formation of a T1/ST2-Expressing Th2-Committed T Cell Compartment In Vivo. Journal of Immunology, 2001, 167, 724-732.	0.8	83

#	Article	IF	CITATIONS
109	Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. European Journal of Immunology, 1999, 29, 1912-1918.	2.9	176
110	Severe B cell deficiency and disrupted splenic architecture in transgenic mice expressing the E41K mutated form of Bruton's tyrosine kinase. EMBO Journal, 1998, 17, 5309-5320.	7.8	60