Wen Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8793541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A27L Protein Mediates Vaccinia Virus Interaction with Cell Surface Heparan Sulfate. Journal of Virology, 1998, 72, 1577-1585.	3.4	290
2	Vaccinia Virus Envelope H3L Protein Binds to Cell Surface Heparan Sulfate and Is Important for Intracellular Mature Virion Morphogenesis and Virus Infection In Vitro and In Vivo. Journal of Virology, 2000, 74, 3353-3365.	3.4	240
3	Vaccinia Virus Envelope D8L Protein Binds to Cell Surface Chondroitin Sulfate and Mediates the Adsorption of Intracellular Mature Virions to Cells. Journal of Virology, 1999, 73, 8750-8761.	3.4	236
4	Vaccinia Virus Proteome: Identification of Proteins in Vaccinia Virus Intracellular Mature Virion Particles. Journal of Virology, 2006, 80, 2127-2140.	3.4	216
5	An External Loop Region of Domain III of Dengue Virus Type 2 Envelope Protein Is Involved in Serotype-Specific Binding to Mosquito but Not Mammalian Cells. Journal of Virology, 2004, 78, 378-388.	3.4	202
6	Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host–cell interaction. Nature Chemistry, 2011, 3, 557-563.	13.6	168
7	Vaccinia Virus 4c (A26L) Protein on Intracellular Mature Virus Binds to the Extracellular Cellular Matrix Laminin. Journal of Virology, 2007, 81, 2149-2157.	3.4	116
8	Cell Surface Proteoglycans Are Necessary for A27L Protein-Mediated Cell Fusion: Identification of the N-Terminal Region of A27L Protein as the Glycosaminoglycan-Binding Domain. Journal of Virology, 1998, 72, 8374-8379.	3.4	92
9	Molecular Chaperone Hsp90 Is Important for Vaccinia Virus Growth in Cells. Journal of Virology, 2002, 76, 1379-1390.	3.4	91
10	Vaccinia Virus Penetration Requires Cholesterol and Results in Specific Viral Envelope Proteins Associated with Lipid Rafts. Journal of Virology, 2005, 79, 1623-1634.	3.4	87
11	A Novel Cellular Protein, VPEF, Facilitates Vaccinia Virus Penetration into HeLa Cells through Fluid Phase Endocytosis. Journal of Virology, 2008, 82, 7988-7999.	3.4	87
12	Integrin β1 Mediates Vaccinia Virus Entry through Activation of PI3K/Akt Signaling. Journal of Virology, 2012, 86, 6677-6687.	3.4	86
13	Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells. ACS Nano, 2017, 11, 2575-2585.	14.6	80
14	Role of the Serine-Threonine Kinase PAK-1 in Myxoma Virus Replication. Journal of Virology, 2003, 77, 5877-5888.	3.4	70
15	Poxvirus Host Range Protein CP77 Contains an F-Box-Like Domain That Is Necessary To Suppress NF-κB Activation by Tumor Necrosis Factor Alpha but Is Independent of Its Host Range Function. Journal of Virology, 2009, 83, 4140-4152.	3.4	64
16	Laser-Induced Acoustic Desorption Mass Spectrometry of Single Bioparticles. Angewandte Chemie - International Edition, 2006, 45, 1423-1426.	13.8	63
17	The Envelope C3L Protein Is Essential for Entry of Vaccinia Virus into Host Cells. Journal of Virology, 2006, 80, 8402-8410.	3.4	62
18	The Lipid Raft-Associated Protein CD98 Is Required for Vaccinia Virus Endocytosis. Journal of Virology, 2012, 86, 4868-4882.	3.4	53

Wen Chang

#	Article	IF	CITATIONS
19	Vaccinia Virus J1R Protein: a Viral Membrane Protein That Is Essential for Virion Morphogenesis. Journal of Virology, 2002, 76, 9575-9587.	3.4	44
20	Vaccinia Virus A25 and A26 Proteins Are Fusion Suppressors for Mature Virions and Determine Strain-Specific Virus Entry Pathways into HeLa, CHO-K1, and L Cells. Journal of Virology, 2010, 84, 8422-8432.	3.4	42
21	Enrichment of Insertional Mutants Following Retrovirus Gene Trap Selection. Virology, 1993, 193, 737-747.	2.4	39
22	A Poxvirus Host Range Protein, CP77, Binds to a Cellular Protein, HMG20A, and Regulates Its Dissociation from the Vaccinia Virus Genome in CHO-K1 Cells. Journal of Virology, 2006, 80, 7714-7728.	3.4	32
23	Crystal Structure of Vaccinia Viral A27 Protein Reveals a Novel Structure Critical for Its Function and Complex Formation with A26 Protein. PLoS Pathogens, 2013, 9, e1003563.	4.7	32
24	Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22. Journal of Virology, 2015, 89, 8365-8382.	3.4	32
25	The Oligomeric Structure of Vaccinia Viral Envelope Protein A27L is Essential for Binding to Heparin and Heparan Sulfates on Cell Surfaces: A Structural and Functional Approach Using Site-specific Mutagenesis. Journal of Molecular Biology, 2005, 349, 1060-1071.	4.2	30
26	Vaccinia Mature Virus Fusion Regulator A26 Protein Binds to A16 and G9 Proteins of the Viral Entry Fusion Complex and Dissociates from Mature Virions at Low pH. Journal of Virology, 2012, 86, 3809-3818.	3.4	30
27	The cowpox virus host range gene, CP77, affects phosphorylation of eIF2 α and vaccinia viral translation in apoptotic HeLa cells. Virology, 2004, 329, 199-212.	2.4	26
28	A Turn-like Structure "KKPE―Segment Mediates the Specific Binding of Viral Protein A27 to Heparin and Heparan Sulfate on Cell Surfaces. Journal of Biological Chemistry, 2009, 284, 36535-36546.	3.4	23
29	Isolation of a monoclonal antibody which blocks vaccinia virus infection. Journal of Virology, 1995, 69, 517-522.	3.4	23
30	Disulfide Bond Formation at the C Termini of Vaccinia Virus A26 and A27 Proteins Does Not Require Viral Redox Enzymes and Suppresses Glycosaminoglycan-Mediated Cell Fusion. Journal of Virology, 2009, 83, 6464-6476.	3.4	22
31	Isolation and characterization of a Chinese hamster ovary mutant cell line with altered sensitivity to vaccinia virus killing. Journal of Virology, 1996, 70, 4655-4666.	3.4	22
32	Vaccinia viral A26 protein is a fusion suppressor of mature virus and triggers membrane fusion through conformational change at low pH. PLoS Pathogens, 2019, 15, e1007826.	4.7	20
33	Role of LipidÂRafts in Pathogen-Host Interaction -ÂA Mini Review. Frontiers in Immunology, 2021, 12, 815020.	4.8	20
34	Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS ONE, 2021, 16, e0257191.	2.5	19
35	Glycosaminoglycans-Specific Cell Targeting and Imaging Using Fluorescent Nanodiamonds Coated with Viral Envelope Proteins. Analytical Chemistry, 2017, 89, 6527-6534.	6.5	18
36	Apoptosis and host restriction of vaccinia virus in RK13 cells. Virus Research, 1997, 52, 121-132.	2.2	16

WEN CHANG

#	Article	IF	CITATIONS
37	Structural Analysis of the Extracellular Domain of Vaccinia Virus Envelope Protein, A27L, by NMR and CD Spectroscopy. Journal of Biological Chemistry, 2002, 277, 20949-20959.	3.4	14
38	Vaccinia Virus WR53.5/F14.5 Protein Is a New Component of Intracellular Mature Virus and Is Important for Calcium-Independent Cell Adhesion and Vaccinia Virus Virulence in Mice. Journal of Virology, 2008, 82, 10079-10087.	3.4	12
39	Vaccinia Viral Protein A27 Is Anchored to the Viral Membrane via a Cooperative Interaction with Viral Membrane Protein A17. Journal of Biological Chemistry, 2014, 289, 6639-6655.	3.4	11
40	Effects of a Temperature Sensitivity Mutation in the J1R Protein Component of a Complex Required for Vaccinia Virus Assembly. Journal of Virology, 2005, 79, 8046-8056.	3.4	10
41	Differential Innate Immune Signaling in Macrophages by Wild-Type Vaccinia Mature Virus and a Mutant Virus with a Deletion of the A26 Protein. Journal of Virology, 2017, 91, .	3.4	9
42	Ionization of Submicrometer-Sized Particles by Laser-Induced Radiofrequency Plasma for Mass Spectrometric Analysis. Analytical Chemistry, 2018, 90, 13236-13242.	6.5	5
43	Imaging of Vaccinia Virus Entry into HeLa Cells. Methods in Molecular Biology, 2012, 890, 123-133.	0.9	4
44	Experimental Evolution To Isolate Vaccinia Virus Adaptive G9 Mutants That Overcome Membrane Fusion Inhibition via the Vaccinia Virus A56/K2 Protein Complex. Journal of Virology, 2020, 94, .	3.4	3
45	NMR assignments of vaccinia virus protein A28: an entry-fusion complex component. Biomolecular NMR Assignments, 2021, 15, 117-120.	0.8	3
46	Reply to "Bioinformatics Analysis of Differential Innate Immune Signaling in Macrophages by Wild-Type Vaccinia Mature Virus and a Mutant Virus with a Deletion of the A26 Protein― Journal of Virology, 2017, 91, .	3.4	2