
Hyeokjun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8792971/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nature Materials, 2022, 21, 664-672.	27.5	89
2	In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nature Chemistry, 2022, 14, 614-622.	13.6	52
3	Probing Lithium Metals in Batteries by Advanced Characterization and Analysis Tools. Advanced Energy Materials, 2021, 11, 2003039.	19.5	30
4	Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nature Nanotechnology, 2021, 16, 77-84.	31.5	105
5	A p–n fusion strategy to design bipolar organic materials for high-energy-density symmetric batteries. Journal of Materials Chemistry A, 2021, 9, 14485-14494.	10.3	30
6	Liquidâ€Based Janus Electrolyte for Sustainable Redox Mediation in Lithium–Oxygen Batteries. Advanced Energy Materials, 2021, 11, 2102096.	19.5	9
7	High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Letters, 2021, 6, 4416-4425.	17.4	63
8	Enhancing the cycle stability of Li–O ₂ batteries <i>via</i> functionalized carbon nanotube-based electrodes. Journal of Materials Chemistry A, 2020, 8, 4263-4273.	10.3	15
9	Stable and Highâ€Power Calciumâ€lon Batteries Enabled by Calcium Intercalation into Graphite. Advanced Materials, 2020, 32, e1904411.	21.0	87
10	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 18821-18828.	2.0	2
11	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 18662-18669.	13.8	81
12	Tailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries. ACS Energy Letters, 2020, 5, 3733-3740.	17.4	30
13	Dualâ€Functioning Molecular Carrier of Superoxide Radicals for Stable and Efficient Lithium–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1904187.	19.5	20
14	Anionic Redox Activity Regulated by Transition Metal in Lithiumâ€Rich Layered Oxides. Advanced Energy Materials, 2020, 10, 2001207.	19.5	45
15	Calciumâ€Ion Batteries: Stable and Highâ€Power Calciumâ€Ion Batteries Enabled by Calcium Intercalation into Graphite (Adv. Mater. 4/2020). Advanced Materials, 2020, 32, 2070029.	21.0	3
16	Anchored Mediator Enabling Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Angewandte Chemie - International Edition, 2020, 59, 5376-5380.	13.8	31
17	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	27.5	328
18	Anchored Mediator Enabling Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Angewandte Chemie, 2020, 132, 5414-5418.	2.0	10

Hyeokjun Park

#	Article	IF	CITATIONS
19	Structurally Regulating Cation Migration Suppresses Voltage Fade and Redox Asymmetry in Lithium-Rich Layered Oxides. ECS Meeting Abstracts, 2020, MA2020-02, 105-105.	0.0	0
20	Anchored Mediator Enabling Shuttle–Free Redox Mediation in Lithium–Oxygen Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 493-493.	0.0	0
21	Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 16764-16769.	13.8	19
22	Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie, 2019, 131, 16920-16925.	2.0	3
23	A bifunctional auxiliary electrode for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24807-24813.	10.3	4
24	Bifunctional Oxygen Electrocatalysts for Lithiumâ^'Oxygen Batteries. Batteries and Supercaps, 2019, 2, 311-325.	4.7	22
25	Investigation of Li–O ₂ Battery Performance Integrated with RuO ₂ Inverse Opal Cathodes in DMSO. ACS Applied Energy Materials, 2019, 2, 5109-5115.	5.1	10
26	Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nature Communications, 2019, 10, 2598.	12.8	195
27	Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O ₂ Battery by Liquid-Phase Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 8047-8052.	13.7	54
28	Bifunctional Oxygen Electrocatalysts for Lithiumâ€Oxygen Batteries. Batteries and Supercaps, 2019, 2, 269-269.	4.7	1
29	Redox Mediators: A Solution for Advanced Lithium–Oxygen Batteries. Trends in Chemistry, 2019, 1, 349-360.	8.5	50
30	Toward a low-cost high-voltage sodium aqueous rechargeable battery. Materials Today, 2019, 29, 26-36.	14.2	156
31	A comparative kinetic study of redox mediators for high-power lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 6491-6498.	10.3	27
32	Frontispiz: Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie, 2019, 131, .	2.0	0
33	Frontispiece: Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
34	Enhancing Bifunctional Catalytic Activity via a Nanostructured La(Sr)Fe(Co)O _{3â~δ} @Pd Matrix as an Efficient Electrocatalyst for Li–O ₂ Batteries. ACS Applied Energy Materials, 2019, 2, 8633-8640.	5.1	9
35	Biological Redox Mediation in Electron Transport Chain of Bacteria for Oxygen Reduction Reaction Catalysts in Lithium–Oxygen Batteries. Advanced Functional Materials, 2019, 29, 1805623.	14.9	50
36	Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in High-Energy Layered Lithium-Rich Electrodes. ECS Meeting Abstracts, 2019, , .	0.0	0

Hyeokjun Park

#	Article	IF	CITATIONS
37	Abnormal self-discharge in lithium-ion batteries. Energy and Environmental Science, 2018, 11, 970-978.	30.8	114
38	Enhanced Stability of Coated Carbon Electrode for Liâ€O ₂ Batteries and Its Limitations. Advanced Energy Materials, 2018, 8, 1702661.	19.5	57
39	Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in Highâ€Energy Layered Lithiumâ€Rich Electrodes. Advanced Energy Materials, 2018, 8, 1800606.	19.5	97
40	Roll-to-Roll Laser-Printed Graphene–Graphitic Carbon Electrodes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 1033-1038.	8.0	29
41	Highly Durable and Stable Sodium Superoxide in Concentrated Electrolytes for Sodium–Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1801760.	19.5	15
42	Enhancement of Oxygen Reduction Reaction Catalytic Activity via the Modified Surface of La0.6Sr0.4Co0.2Fe0.8O3â°Î´ with Palladium Nanoparticles as Cathode for Lithium–Air Battery. ACS Applied Energy Materials, 2018, , .	5.1	11
43	Anisotropic Surface Modulation of Pt Catalysts for Highly Reversible Li–O ₂ Batteries: High Index Facet as a Critical Descriptor. ACS Catalysis, 2018, 8, 9006-9015.	11.2	68
44	Highly Durable and Stable Sodium Superoxide in Concentrated Electrolytes for Sodium–Oxygen Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
45	Enhanced Stability of Coated Carbon Electrode for Li–O2 Batteries and Its Limitations. ECS Meeting Abstracts, 2018, , .	0.0	0
46	Abnormal Self-Discharge in Lithium-Ion Batteries. ECS Meeting Abstracts, 2018, MA2018-01, 294-294.	0.0	1
47	Simple and Effective Gas-Phase Doping for Lithium Metal Protection in Lithium Metal Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
48	Biological Redox Mediation for Oxygen Reduction Reaction Catalysts in Lithium–Oxygen Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
49	Reaction chemistry in rechargeable Li–O ₂ batteries. Chemical Society Reviews, 2017, 46, 2873-2888.	38.1	314
50	High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes. Nature Communications, 2017, 8, 14989.	12.8	40
51	Simple and Effective Gas-Phase Doping for Lithium Metal Protection in Lithium Metal Batteries. Chemistry of Materials, 2017, 29, 9182-9191.	6.7	32
52	Tuning the Carbon Crystallinity for Highly Stable Li–O ₂ Batteries. Chemistry of Materials, 2016, 28, 8160-8169.	6.7	47
53	Dissolution and ionization of sodium superoxide in sodium–oxygen batteries. Nature Communications, 2016, 7, 10670.	12.8	129
54	A New Perspective on Li–SO ₂ Batteries for Rechargeable Systems. Angewandte Chemie - International Edition, 2015, 54, 9663-9667.	13.8	37

#	Article	IF	CITATIONS
55	Rücktitelbild: A New Perspective on Li-SO2Batteries for Rechargeable Systems (Angew. Chem. 33/2015). Angewandte Chemie, 2015, 127, 9860-9860.	2.0	ο