
Bissan Al-Lazikani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8792663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How many drug targets are there?. Nature Reviews Drug Discovery, 2006, 5, 993-996.	46.4	3,073
2	ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Research, 2012, 40, D1100-D1107.	14.5	3,028
3	A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery, 2017, 16, 19-34.	46.4	1,608
4	Combinatorial drug therapy for cancer in the post-genomic era. Nature Biotechnology, 2012, 30, 679-692.	17.5	883
5	Therapeutic opportunities within the DNA damage response. Nature Reviews Cancer, 2015, 15, 166-180.	28.4	442
6	Genomic-scale prioritization of drug targets: the TDR Targets database. Nature Reviews Drug Discovery, 2008, 7, 900-907.	46.4	282
7	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nature Genetics, 2018, 50, 682-692.	21.4	182
8	canSAR: an updated cancer research and drug discovery knowledgebase. Nucleic Acids Research, 2016, 44, D938-D943.	14.5	114
9	Objective assessment of cancer genes for drug discovery. Nature Reviews Drug Discovery, 2013, 12, 35-50.	46.4	111
10	Drug discovery in advanced prostate cancer: translating biology into therapy. Nature Reviews Drug Discovery, 2016, 15, 699-718.	46.4	111
11	PDBe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Research, 2020, 48, D344-D353.	14.5	87
12	Minimum information about a bioactive entity (MIABE). Nature Reviews Drug Discovery, 2011, 10, 661-669.	46.4	80
13	canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Research, 2019, 47, D917-D922.	14.5	75
14	Objective, Quantitative, Data-Driven Assessment of Chemical Probes. Cell Chemical Biology, 2018, 25, 194-205.e5.	5.2	71
15	canSAR: updated cancer research and drug discovery knowledgebase. Nucleic Acids Research, 2014, 42, D1040-D1047.	14.5	69
16	The kinase polypharmacology landscape of clinical PARP inhibitors. Scientific Reports, 2020, 10, 2585.	3.3	68
17	Polypharmacology in Precision Oncology: Current Applications and Future Prospects. Current Pharmaceutical Design, 2017, 22, 6935-6945.	1.9	65
18	canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Research, 2021, 49, D1074-D1082.	14.5	63

BISSAN AL-LAZIKANI

#	Article	IF	CITATIONS
19	canSAR: an integrated cancer public translational research and drug discovery resource. Nucleic Acids Research, 2012, 40, D947-D956.	14.5	62
20	Genome-based cancer therapeutics: targets, kinase drug resistance and future strategies for precision oncology. Current Opinion in Pharmacology, 2013, 13, 486-496.	3.5	55
21	Drugging cancer genomes. Nature Reviews Drug Discovery, 2013, 12, 889-890.	46.4	47
22	PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Research, 2022, 50, D534-D542.	14.5	46
23	Distinctive Behaviors of Druggable Proteins in Cellular Networks. PLoS Computational Biology, 2015, 11, e1004597.	3.2	43
24	Target 2035 – update on the quest for a probe for every protein. RSC Medicinal Chemistry, 2022, 13, 13-21.	3.9	39
25	Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer. ELife, 2017, 6, .	6.0	32
26	Public resources for chemical probes: the journey so far and the road ahead. Future Medicinal Chemistry, 2021, 13, 731-747.	2.3	24
27	Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases. Oncogene, 2019, 38, 5905-5920.	5.9	23
28	JMJD6 Is a Druggable Oxygenase That Regulates AR-V7 Expression in Prostate Cancer. Cancer Research, 2022, 81, 1087-1100.	0.9	23
29	Transforming cancer drug discovery with Big Data and Al. Expert Opinion on Drug Discovery, 2019, 14, 1089-1095.	5.0	22
30	Personalized Medicine: Patient-Predictive Panel Power. Cancer Cell, 2012, 21, 455-458.	16.8	16
31	Differences in Signaling Patterns on PI3K Inhibition Reveal Context Specificity in <i>KRAS</i> -Mutant Cancers. Molecular Cancer Therapeutics, 2019, 18, 1396-1404.	4.1	14
32	Evolution of kinase polypharmacology across HSP90 drug discovery. Cell Chemical Biology, 2021, 28, 1433-1445.e3.	5.2	13
33	A novel serum protein signature associated with resistance to epidermal growth factor receptor tyrosine kinase inhibitors in head and neck squamous cell carcinoma. European Journal of Cancer, 2013, 49, 2512-2521.	2.8	11
34	Rational design of non-resistant targeted cancer therapies. Scientific Reports, 2017, 7, 46632.	3.3	11
35	Blocking the survival of the nastiest by HSP90 inhibition. Oncotarget, 2016, 7, 3658-3661.	1.8	11
36	Unpicking the Combination Lock for Mutant BRAF and RAS Melanomas. Cancer Discovery, 2013, 3, 14-19.	9.4	8

BISSAN AL-LAZIKANI

#	Article	IF	CITATIONS
37	Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches. Scientific Reports, 2020, 10, 16000.	3.3	8
38	SiGNet: A signaling network data simulator to enable signaling network inference. PLoS ONE, 2017, 12, e0177701.	2.5	7
39	The Molecular Basis of Predicting Druggability. , 0, , 1315-1334.		5
40	Tuning Local Hydration Enables a Deeper Understanding of Protein–Ligand Binding: The PP1-Src Kinase Case. Journal of Physical Chemistry Letters, 2021, 12, 49-58.	4.6	5
41	canSAR chemistry registration and standardization pipeline. Journal of Cheminformatics, 2022, 14, .	6.1	5
42	Minimizing bias in target selection by exploiting multidisciplinary Big Data and the protein interactome. Future Medicinal Chemistry, 2016, 8, 1711-1716.	2.3	4
43	Leveraging Human Genetics to Guide Cancer Drug Development. JCO Clinical Cancer Informatics, 2018, 2, 1-11.	2.1	3
44	Unravelling the context specificity of signalling in KRAS mutant cancers: Implications for design of clinical trials. Annals of Oncology, 2018, 29, iii7.	1.2	3
45	Genomics, bio specimens, and other biological data: Current status and future directions. Medical Physics, 2018, 45, e829-e833.	3.0	3
46	Individualized Prediction of Drug Response and Rational Combination Therapy in NSCLC Using Artificial Intelligence–Enabled Studies of Acute Phosphoproteomic Changes. Molecular Cancer Therapeutics, 2022, 21, 1020-1029.	4.1	3
47	Abstract 2730: RNAi knockdown or chemical inhibition of anaphase-promoting complex components is synthetic lethal with HSP90 inhibition. , 2014, , .		1
48	Abstract B096: canSAR, a cancer research and drug discovery knowledgebase. Molecular Cancer Therapeutics, 2018, 17, B096-B096.	4.1	1
49	Shouldn't enantiomeric purity be included in the 'minimum information about a bioactive entity? Response from the MIABE group. Nature Reviews Drug Discovery, 2012, 11, 730-730.	46.4	Ο
50	Abstract 4164: The druggable proteome: Identifying novel target families for cancer. , 2014, , .		0
51	Abstract 4383: SOCRATES: integrating ex vivo and in silico analysis to identify optimal drug combinations for patients. , 2016, , .		Ο
52	Abstract 3099:KRASand clinical context: Differential dynamic signaling output ofKRASmutant lung, colorectal and pancreatic cancer cell lines when exposed to targeted anticancer drugs. , 2016, , .		0
53	Abstract 996: A translational phosphoproteomic approach to study differences inKRASsignaling in pancreatic, colorectal and lung cancers. , 2017, , .		0
54	Abstract A024: Probe Miner: objective, quantitative, data-driven assessment of chemical probes for target validation. , 2018, , .		0

#	Article	IF	CITATIONS
55	Abstract 776: Utilising genetic susceptibility and big data to inform novel cancer therapies. , 2018, , .		Ο
56	Abstract 1821: Genome-wide genetic screens define the drug resistance landscape of BRAF mutant colon cancer. , 2018, , .		0
57	Abstract A067: Targeting the bromodomain and extra-terminal (BET) family proteins and beyond in metastatic castration-resistant prostate cancer (mCRPC): Overcoming aberrant androgen receptor (AR) signaling. , 2018, , .		Ο
58	Abstract LB-C01: The kinase polypharmacology landscape of clinical PARP inhibitors. , 2019, , .		0