Qianrong Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8791820/publications.pdf Version: 2024-02-01

OLANDONG FANG

#	Article	IF	CITATIONS
1	Fabrication of electron–acceptor staggered AB Covalent triazine-based frameworks for enhanced visible-light-driven H2 evolution. Journal of Colloid and Interface Science, 2022, 608, 1449-1456.	9.4	10
2	Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR). Chemical Research in Chinese Universities, 2022, 38, 396-401.	2.6	14
3	Gating Effects for Ion Transport in Threeâ€Ðimensional Functionalized Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	2.0	7
4	A New Covalent Organic Framework Modified with Sulfonic Acid for CO ₂ Uptake and Selective Dye Adsorption. Acta Chimica Sinica, 2022, 80, 37.	1.4	3
5	Gating Effects for Ion Transport in Threeâ€Ðimensional Functionalized Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
6	Threeâ€Dimensional Triptyceneâ€Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angewandte Chemie - International Edition, 2022, 61, .	13.8	61
7	Excellent electrocatalytic performance of metal-free thiophene–sulfur covalent organic frameworks for hydrogen evolution in alkaline medium. Journal of Materials Chemistry A, 2022, 10, 10092-10097.	10.3	26
8	Design and Synthesis of a Zeolitic Organic Framework**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
9	A Two-dimensional Covalent Organic Framework for Iodine Adsorption. Chemical Research in Chinese Universities, 2022, 38, 456-460.	2.6	3
10	Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-Concentration lodine at High Temperatures. Journal of the American Chemical Society, 2022, 144, 6821-6829.	13.7	89
11	Amorphous-to-Crystalline Transformation: General Synthesis of Hollow Structured Covalent Organic Frameworks with High Crystallinity. Journal of the American Chemical Society, 2022, 144, 6583-6593.	13.7	77
12	A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction. Chemical Research in Chinese Universities, 2022, 38, 167-172.	2.6	11
13	A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption. Chemical Research in Chinese Universities, 2022, 38, 834-837.	2.6	6
14	<scp>Threeâ€Dimensional</scp> sp ² <scp>Carbonâ€Linked</scp> Covalent Organic Frameworks as a Drug Carrier Combined with Fluorescence Imaging. Chinese Journal of Chemistry, 2022, 40, 2081-2088.	4.9	26
15	2D Microporous Covalent Organic Frameworks as Cobalt Nanoparticle Supports for Electrocatalytic Hydrogen Evolution Reaction. Crystals, 2022, 12, 880.	2.2	2
16	Functional Regulation and Stability Engineering of Three-Dimensional Covalent Organic Frameworks. Accounts of Chemical Research, 2022, 55, 1912-1927.	15.6	63
17	Facile synthesis of 3D covalent organic frameworks <i>via</i> a two-in-one strategy. Chemical Communications, 2021, 57, 2136-2139.	4.1	11
18	3D Thioetherâ€Based Covalent Organic Frameworks for Selective and Efficient Mercury Removal. Small, 2021, 17, e2006112.	10.0	34

#	Article	IF	CITATIONS
19	Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology. Journal of the American Chemical Society, 2021, 143, 2654-2659.	13.7	94
20	Recent advances in AlEgenâ€based crystalline porous materials for chemical sensing. Aggregate, 2021, 2, e34.	9.9	27
21	Threeâ€Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angewandte Chemie, 2021, 133, 22404-22409.	2.0	12
22	Threeâ€Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angewandte Chemie - International Edition, 2021, 60, 22230-22235.	13.8	37
23	3D Hydrazoneâ€Functionalized Covalent Organic Frameworks as pHâ€Triggered Rotary Switches. Small, 2021, 17, e2102630.	10.0	32
24	3D Covalent Organic Frameworks Based on Polycyclic Aromatic Hydrocarbons for Reversible Oxygen Capture. Small Structures, 2021, 2, 2000108.	12.0	15
25	Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture. Chemical Science, 2021, 12, 8452-8457.	7.4	87
26	Syntheses, Crystal Structures and Theoretical Calculations of Two Nickel, Zinc Coordination Polymers with 4-Nitrophthalic Acid and Bis(imidazol) Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 477-485.	3.7	1
27	Postsynthetic functionalization of covalent organic frameworks. National Science Review, 2020, 7, 170-190.	9.5	142
28	Bimetallic ZIF derived Co nanoparticle anchored N-doped porous carbons for an efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2020, 7, 946-952.	6.0	15
29	Three-Dimensional Large-Pore Covalent Organic Framework with stp Topology. Journal of the American Chemical Society, 2020, 142, 13334-13338.	13.7	149
30	Threeâ€Ðimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie, 2020, 132, 19801-19806.	2.0	13
31	Expanding the Synthesis Field of Highâ€Silica Zeolites. Angewandte Chemie - International Edition, 2020, 59, 19576-19581.	13.8	18
32	A sponge-like small pore zeolite with great accessibility to its micropores. Inorganic Chemistry Frontiers, 2020, 7, 2154-2159.	6.0	12
33	Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2020, 32, e2002038.	21.0	148
34	Design and applications of three dimensional covalent organic frameworks. Chemical Society Reviews, 2020, 49, 1357-1384.	38.1	509
35	Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries. Microporous and Mesoporous Materials, 2020, 299, 110105.	4.4	28
36	Three-Dimensional Mesoporous Covalent Organic Frameworks through Steric Hindrance Engineering. Journal of the American Chemical Society, 2020, 142, 3736-3741.	13.7	113

#	Article	IF	CITATIONS
37	Exfoliated Mesoporous 2D Covalent Organic Frameworks for Highâ€Rate Electrochemical Double‣ayer Capacitors. Advanced Materials, 2020, 32, e1907289.	21.0	136
38	Binder-free preparation of ZSM-5@silica beads and their use for organic pollutant removal. Inorganic Chemistry Frontiers, 2020, 7, 2080-2088.	6.0	8
39	Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 8104-8108.	13.7	226
40	Threeâ€Dimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie - International Edition, 2020, 59, 19633-19638.	13.8	49
41	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.	19.1	129
42	Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. Journal of the American Chemical Society, 2019, 141, 13324-13329.	13.7	146
43	Carbon beads with a well-defined pore structure derived from ion-exchange resin beads. Journal of Materials Chemistry A, 2019, 7, 18285-18294.	10.3	16
44	Synthesis of zeolite SSZ-24 using a catalytic amount of SSZ-13 seeds. Inorganic Chemistry Frontiers, 2019, 6, 3097-3103.	6.0	12
45	From ZIF nanoparticles to hierarchically porous carbon: toward very high surface area and high-performance supercapacitor electrode materials. Inorganic Chemistry Frontiers, 2019, 6, 32-39.	6.0	14
46	Three-dimensional Salphen-based Covalent–Organic Frameworks as Catalytic Antioxidants. Journal of the American Chemical Society, 2019, 141, 2920-2924.	13.7	193
47	One-pot cascade syntheses of microporous and mesoporous pyrazine-linked covalent organic frameworks as Lewis-acid catalysts. Dalton Transactions, 2019, 48, 7352-7357.	3.3	26
48	Chemically stable polyarylether-based covalent organic frameworks. Nature Chemistry, 2019, 11, 587-594.	13.6	509
49	Hydrothermal synthesis and crystal structure of three-dimensional supramolecular zinc, manganese coordination polymers. Inorganic and Nano-Metal Chemistry, 2019, 49, 44-50.	1.6	2
50	A Robust Zeolitic Imidazolate Framework Membrane with High H ₂ /CO ₂ Separation Performance under Hydrothermal Conditions. ACS Applied Materials & Interfaces, 2019, 11, 15748-15755.	8.0	27
51	A new ZIF molecular-sieving membrane for high-efficiency dye removal. Chemical Communications, 2019, 55, 3505-3508.	4.1	19
52	Fast and efficient synthesis of SSZ-13 by interzeolite conversion of Zeolite Beta and Zeolite L. Microporous and Mesoporous Materials, 2019, 280, 306-314.	4.4	44
53	Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants. Chemical Science, 2019, 10, 10815-10820.	7.4	65
54	Solvent-Free Crystallization of Zeolitic Imidazolate Framework Membrane via Layer-by-Layer Deposition. ACS Sustainable Chemistry and Engineering, 2019, 7, 4158-4164.	6.7	22

#	Article	IF	CITATIONS
55	A stable ZIF-8-coated mesh membrane with micro-/nano architectures produced by a facile fabrication method for high-efficiency oil-water separation. Science China Materials, 2019, 62, 536-544.	6.3	25
56	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie, 2018, 130, 6150-6156.	2.0	67
57	Made in Water: A Stable Microporous Cu(I)-carboxylate Framework (CityU-7) for CO ₂ , Water, and Iodine Uptake. Inorganic Chemistry, 2018, 57, 4807-4811.	4.0	18
58	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, 6042-6048.	13.8	255
59	Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 4494-4498.	13.7	283
60	Frontispiz: Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie, 2018, 130, .	2.0	0
61	Frontispiece: Postsynthetic Functionalization of Threeâ€Đimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
62	MOF–cation exchange resin composites and their use for water decontamination. Inorganic Chemistry Frontiers, 2018, 5, 2784-2791.	6.0	15
63	Postsynthetic Covalent Modification in Covalent Organic Frameworks. Israel Journal of Chemistry, 2018, 58, 971-984.	2.3	55
64	UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 17301-17308.	8.0	120
65	Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability. Inorganic Chemistry Frontiers, 2018, 5, 2018-2022.	6.0	5
66	A quaternary-ammonium-functionalized covalent organic framework for anion conduction. CrystEngComm, 2017, 19, 4905-4910.	2.6	49
67	Synthesis and application of a MOF-derived Ni@C catalyst by the guidance from an in situ hot stage in TEM. RSC Advances, 2017, 7, 26377-26383.	3.6	27
68	Cation exchanged MOF-derived nitrogen-doped porous carbons for CO ₂ capture and supercapacitor electrode materials. Journal of Materials Chemistry A, 2017, 5, 9544-9552.	10.3	149
69	MOF-derived Co@N-C nanocatalyst for catalytic reduction of 4-nitrophenol to 4-aminophenol. Microporous and Mesoporous Materials, 2017, 241, 346-354.	4.4	65
70	Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes. CrystEngComm, 2017, 19, 6612-6619.	2.6	17
71	Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange. Journal of the American Chemical Society, 2017, 139, 17771-17774.	13.7	211
72	Threeâ€Dimensional Porous Heterometallicâ€Organic Frameworks: Synthesis, Luminescent, Magnetic, Adsorption and Hydrogen Storage Properties. Chinese Journal of Chemistry, 2016, 34, 196-202.	4.9	10

#	Article	IF	CITATIONS
73	Nitrogenâ€Doped Nanoporous Carbons through Direct Carbonization of a Metalâ€Biomolecule Framework for Supercapacitor. Chinese Journal of Chemistry, 2016, 34, 203-209.	4.9	5
74	ZIF-derived in situ nitrogen decorated porous carbons for CO ₂ capture. Inorganic Chemistry Frontiers, 2016, 3, 1112-1118.	6.0	51
75	Guidance from an in situ hot stage in TEM to synthesize magnetic metal nanoparticles from a MOF. Chemical Communications, 2016, 52, 10513-10516.	4.1	27
76	Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis. Journal of the American Chemical Society, 2016, 138, 14783-14788.	13.7	260
77	Porous ZnCo ₂ O ₄ nanoparticles derived from a new mixed-metal organic framework for supercapacitors. Inorganic Chemistry Frontiers, 2015, 2, 177-183.	6.0	130
78	Permethyl Cobaltocenium (Cp*2Co+) as an Ultra-Stable Cation for Polymer Hydroxide-Exchange Membranes. Scientific Reports, 2015, 5, 11668.	3.3	111
79	3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. Journal of the American Chemical Society, 2015, 137, 8352-8355.	13.7	838
80	Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy and Environmental Science, 2015, 8, 3515-3530.	30.8	364
81	3D Microporous Baseâ€Functionalized Covalent Organic Frameworks for Sizeâ€Selective Catalysis. Angewandte Chemie - International Edition, 2014, 53, 2878-2882.	13.8	554
82	Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society, 2014, 136, 7077-7084.	13.7	1,202
83	Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy and Environmental Science, 2014, 7, 1719-1724.	30.8	276
84	Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nature Communications, 2014, 5, 4503.	12.8	535
85	A novel low density metal–organic framework with pcu topology by dendritic ligand. Chemical Communications, 2011, 47, 9167.	4.1	63
86	A series of 3-D lanthanide coordination polymers constructed from dinuclear building blocks: Synthesis, structure, thermal stability, and fluorescent properties. Journal of Molecular Structure, 2010, 969, 208-215.	3.6	9
87	RECENT ADVANCES IN THE STUDY OF MESOPOROUS METAL-ORGANIC FRAMEWORKS. Comments on Inorganic Chemistry, 2010, 31, 165-195.	5.2	84
88	Unprecedented Marriage of a Cationic Pentanuclear Cluster and a 2D Polymeric Anionic Layer Based on a Flexible Tripodal Ligand and a Cu ^{II} Ion. Inorganic Chemistry, 2010, 49, 769-771.	4.0	89
89	Functional Mesoporous Metalâ ´'Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorganic Chemistry, 2010, 49, 11637-11642.	4.0	283
90	Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 2009, 253, 3042-3066.	18.8	1,422

#	Article	lF	CITATIONS
91	A rare 3D lanthanide metal–organic framework with the rutile topology: Synthesis, structure and properties. Journal of Molecular Structure, 2009, 931, 25-30.	3.6	10
92	A Series of Three-Dimensional Lanthanide Coordination Compounds with the Rutile Topology. Crystal Growth and Design, 2009, 9, 737-742.	3.0	51
93	Rational Design and Control of the Dimensions of Channels in a Series of 3D Pillared Metalâ^'Organic Frameworks: Synthesis, Structures, Adsorption, and Luminescence Properties. Crystal Growth and Design, 2008, 8, 427-434.	3.0	71
94	Amine-Templated Assembly of Metal–Organic Frameworks with Attractive Topologies. Crystal Growth and Design, 2008, 8, 319-329.	3.0	120
95	A novel Metal-Organic Framework with pcu topology constructed from cadmium and 1, 4-diaza-bicyclo [2.2.2] octane-N, N'-dioxide. Studies in Surface Science and Catalysis, 2008, , 435-440.	1.5	0
96	Synthesis, structures and multifunctional properties of metal-organic open frameworks with intriguing molecular topologies. Studies in Surface Science and Catalysis, 2007, 170, 2004-2014.	1.5	1
97	A Novel Metalâ^'Organic Framework with the Diamondoid Topology Constructed from Pentanuclear Zincâ^'Carboxylate Clusters. Crystal Growth and Design, 2007, 7, 1035-1037.	3.0	70
98	A novel 3D metal-organic framework with the pcu topology constructed from 1,4-diaza-bicyclo[2.2.2]octane-N,N′-dioxide. Inorganic Chemistry Communication, 2007, 10, 649-651.	3.9	14
99	Synthesis, structure and luminescent property of a new 3D porous metal–organic framework with rutile topology. Journal of Molecular Structure, 2007, 871, 80-84.	3.6	10
100	Syntheses, Structures, Ionic Conductivities, and Magnetic Properties of Three New Transition-Metal Borophosphates Na5(H3O){MII3[B3O3(OH)]3(PO4)6}·2H2O (MII= Mn, Co, Ni). Inorganic Chemistry, 2006, 45, 3588-3593.	4.0	23
101	Construction of 3D Layer-Pillared Homoligand Coordination Polymers from a 2D Layered Precursor. Inorganic Chemistry, 2006, 45, 8677-8684.	4.0	69
102	Structure, Luminescence, and Adsorption Properties of Two Chiral Microporous Metalâ^'Organic Frameworks. Inorganic Chemistry, 2006, 45, 3582-3587.	4.0	240
103	Design, structure and properties of a novel 3D metal-organic framework constructed from N-donor ligand supporting Cd(II)-carboxylate layer. Inorganic Chemistry Communication, 2006, 9, 603-606.	3.9	16
104	Self-assembly of a 1D helical manganese coordination polymer and a tetranuclear lanthanum complex with 1,10-phenanthroline and 3,5-dinitrosalicylato dianion. Inorganic Chemistry Communication, 2006, 9, 1165-1168.	3.9	19
105	Design, synthesis and fluorescence of two-dimensional pillared layers by connecting infinite one-dimensional chains via 4,4′-bipyridine. Journal of Molecular Structure, 2006, 787, 45-49.	3.6	64
106	Solvothermal synthesis, structure and magnetism of two novel 3D metal-organic frameworks based on infinite helical Mn–O–C rod-shaped building units. Journal of Molecular Structure, 2006, 796, 165-171.	3.6	10
107	Solvothermal synthesis and removal capacity for hydrogen chloride gas of Zn(OH)(NO3) with a rare (10,3)-d net. Journal of Solid State Chemistry, 2006, 179, 1230-1236.	2.9	8
108	Novel open-framework fluorinated indium phosphate with 14-ring intersecting channels: Assembled from 6â^—1 and racemic pillared secondary building units. Microporous and Mesoporous Materials, 2006, 97, 132-140.	4.4	19

#	Article	IF	CITATIONS
109	Microporous Metal–Organic Framework Constructed from Heptanuclear Zinc Carboxylate Secondary Building Units. Chemistry - A European Journal, 2006, 12, 3754-3758.	3.3	159
110	[(C4H12N)2][Zn3(HPO3)4]: An Open-Framework Zinc Phosphite Containing Extra-Large 24-Ring Channels. Angewandte Chemie - International Edition, 2006, 45, 2546-2548.	13.8	156
111	A Multifunctional Metal–Organic Open Framework with a bcu Topology Constructed from Undecanuclear Clusters. Angewandte Chemie - International Edition, 2006, 45, 6126-6130.	13.8	227
112	[H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4]·4[H2O]: A new layered aluminum phosphate-oxalate. Journal of Solid State Chemistry, 2005, 178, 2686-2691.	2.9	10
113	Synthesis and characterization of metalloborophosphates with zeotype ANA framework by the boric acid â€~flux' method. Microporous and Mesoporous Materials, 2005, 87, 124-132.	4.4	26
114	(H3NC2H4NH3)[In(OH)3(HPO3)]: the first organically templated indium phosphite. Inorganic Chemistry Communication, 2005, 8, 271-273.	3.9	15
115	A Metal-Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2.5 nm3. Angewandte Chemie - International Edition, 2005, 44, 3845-3848.	13.8	209
116	Synthesis and characterization of two new open-framework zinc phosphites [M(C6N4H18)][Zn3(HPO3)4] (M=Ni, Co) with multi-directional intersecting 12-membered ring channels. Journal of Solid State Chemistry, 2005, 178, 2673-2679.	2.9	16
117	Solvothermal synthesis, structure and Mössbauer spectroscopy of a new mixed-valence iron aluminophosphate [Fell(H2O)2 Fe0.8IIIAI1.2(PO4)3]·H3O. Comptes Rendus Chimie, 2005, 8, 541-547.	0.5	6
118	A chiral layered Co(ii) coordination polymer with helical chains from achiral materials. Chemical Communications, 2005, , 1396.	4.1	156
119	Synthesis and Characterization of Four Novel Supramolecular Compounds Based on Metal Zinc and Cadmium. Crystal Growth and Design, 2005, 5, 1091-1098.	3.0	88
120	Polymeric Frameworks Constructed from a Metalâ^'Organic Coordination Compound, in 1-D and 2-D Systems:  Synthesis, Crystal Structures, and Fluorescent Properties. Crystal Growth and Design, 2005, 5, 341-346.	3.0	119
121	Synthesis, Structure and Luminescent Properties of Rare Earth Coordination Polymers Constructed from Paddle-Wheel Building Blocks. Inorganic Chemistry, 2005, 44, 3850-3855.	4.0	250
122	From a 1-D Chain, 2-D Layered Network to a 3-D Supramolecular Framework Constructed from a Metalâ ^{°,} Organic Coordination Compound. Crystal Growth and Design, 2005, 5, 207-213.	3.0	141
123	Synthesis, structure and fluorescence of a novel three-dimensional inorganic–organic hybrid polymer constructed from trimetallic clusters and mixed carboxylate ligands. Journal of Solid State Chemistry, 2004, 177, 1060-1066.	2.9	60
124	Novel Supramolecular Frameworks Self-Assembled from One-Dimensional Polymeric Coordination Chains. European Journal of Inorganic Chemistry, 2004, 2004, 185-191.	2.0	210
125	Crystal structure and fluorescence of a novel 3D inorganic–organic hybrid polymer with mixed ligands. Inorganic Chemistry Communication, 2004, 7, 31-34.	3.9	28
126	Influence of organic bases on constructing 3D photoluminescent open metal–organic polymeric frameworks. Dalton Transactions, 2004, , 2202-2207.	3.3	67

#	Article	IF	CITATIONS
127	The synthesis and characterization of a new 3-D inorganic–organic hybrid framework porous material Zn3(bbdc)3(4,4′-bpy)·2(DMF)·4(H2O). Journal of Solid State Chemistry, 2003, 176, 1-4.	2.9	45
128	Triethylammonium benzene-1,3,5-tricarboxylato(pyridine)zinc(II): a two-dimensional undulating mesh network. Inorganic Chemistry Communication, 2003, 6, 402-404.	3.9	22
129	Synthesis of aluminophosphate molecular sieve AlPO4-11 nanocrystals. Microporous and Mesoporous Materials, 2001, 50, 129-135.	4.4	31
130	Threeâ€Dimensional Triptyceneâ€Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angewandte Chemie, 0, , .	2.0	12
131	Design and Synthesis of a Zeolitic Organic Framework. Angewandte Chemie, 0, , .	2.0	0