Ryan C Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8791511/publications.pdf

Version: 2024-02-01

28 papers

6,101 citations

218677 26 h-index 27 g-index

29 all docs

29 docs citations

29 times ranked 12310 citing authors

#	Article	IF	CITATIONS
1	The multifaceted role of autophagy in cancer. EMBO Journal, 2022, 41, e110031.	7.8	63
2	Regulation of Autophagy Enzymes by Nutrient Signaling. Trends in Biochemical Sciences, 2021, 46, 687-700.	7.5	48
3	An antibody for analysis of autophagy induction. Nature Methods, 2020, 17, 232-239.	19.0	44
4	Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Reports, 2019, 20, e47911.	4.5	61
5	ULK1â€mediated phosphorylation of ATG16L1 promotes xenophagy, but destabilizes the ATG16L1 Crohn's mutant. EMBO Reports, 2019, 20, e46885.	4.5	37
6	Bacterial outer membrane vesicles trigger pre-activation of a xenophagic response via AMPK. Autophagy, 2019, 15, 1489-1491.	9.1	12
7	AMPK Promotes Xenophagy through Priming of Autophagic Kinases upon Detection of Bacterial Outer Membrane Vesicles. Cell Reports, 2019, 26, 2150-2165.e5.	6.4	43
8	mGluR5 antagonism increases autophagy and prevents disease progression in the ⟨i⟩zQ175⟨ i⟩ mouse model of Huntington's disease. Science Signaling, 2017, 10, .	3.6	70
9	Mechanistic Target of Rapamycin. , 2017, , 231-250.		O
10	Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347, 194-198.	12.6	585
10	Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347, 194-198. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283.	12.6	585 47
	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic		
11	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015,	12.8	47
11 12	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015, 29, 2362-2376.	12.8 5.9	47 37
11 12 13	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015, 29, 2362-2376. Autophagy regulation by nutrient signaling. Cell Research, 2014, 24, 42-57. Rag CTPases are cardioprotective by regulating lysosomal function. Nature Communications, 2014, 5,	12.8 5.9 12.0	47 37 601
11 12 13	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015, 29, 2362-2376. Autophagy regulation by nutrient signaling. Cell Research, 2014, 24, 42-57. Rag GTPases are cardioprotective by regulating lysosomal function. Nature Communications, 2014, 5, 4241. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 2013,	12.8 5.9 12.0	47 37 601 73
11 12 13 14	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015, 29, 2362-2376. Autophagy regulation by nutrient signaling. Cell Research, 2014, 24, 42-57. Rag GTPases are cardioprotective by regulating lysosomal function. Nature Communications, 2014, 5, 4241. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 2013, 9, 1983-1995. Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy. Cell,	12.8 5.9 12.0 12.8	47 37 601 73 249

#	Article	IF	CITATIONS
19	Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Molecular Medicine, 2013, 5, 870-890.	6.9	96
20	YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN viaÂmiR-29. Nature Cell Biology, 2012, 14, 1322-1329.	10.3	392
21	Organ Size Control by Hippo and TOR Pathways. Current Biology, 2012, 22, R368-R379.	3.9	167
22	An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development (Cambridge), 2011, 138, 3343-3356.	2.5	123
23	Loss of JAK2 regulation via a heterodimeric VHL-SOCS1 E3 ubiquitin ligase underlies Chuvash polycythemia. Nature Medicine, 2011, 17, 845-853.	30.7	68
24	Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nature Genetics, 2010, 42, 794-800.	21.4	308
25	NEDD8 acts as a †molecular switch' defining the functional selectivity of VHL. EMBO Reports, 2008, 9, 486-491.	4.5	44
26	Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response. PLoS Genetics, 2008, 4, e1000176.	3.5	58
27	The Role of VHL in the Regulation of E-Cadherin: A New Connection in an Old Pathway. Cell Cycle, 2007, 6, 56-59.	2.6	28
28	VHL Promotes E2 Box-Dependent E-Cadherin Transcription by HIF-Mediated Regulation of SIP1 and Snail. Molecular and Cellular Biology, 2007, 27, 157-169.	2.3	230