Sebastian A Stoian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8790525/publications.pdf

Version: 2024-02-01

45 papers 2,065 citations

361413 20 h-index 233421 45 g-index

46 all docs

46 docs citations

times ranked

46

3650 citing authors

#	Article	IF	CITATIONS
1	Evolution of Bonding and Magnetism <i>via</i> Changes in Valence Electron Count in CuFe _{2â€"<i>x</i>} Co _{<i>x</i>} Ge ₂ . Inorganic Chemistry, 2022, 61, 4257-4269.	4.0	1
2	Electronic Structure of Tetrahedral, $\langle i \rangle S < i \rangle = 2$, [Fe{(EP $\langle i \rangle < \sup \langle i \rangle Fr < \sup 2 < \sup$	4.0	3
3	Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d ⁴ Electron Count. Inorganic Chemistry, 2020, 59, 1075-1090.	4.0	24
4	Synthesis and electronic structure of a mononuclear copper(II) complex supported by tris(2-hydroxyliminopropyl)amine. Polyhedron, 2020, 177, 114306.	2.2	3
5	Homoleptic mono-, di-, and tetra-iron complexes featuring phosphido ligands: a synthetic, structural, and spectroscopic study. Dalton Transactions, 2020, 49, 10091-10103.	3.3	3
6	Insights into Molecular Magnetism in Metal–Metal Bonded Systems as Revealed by a Spectroscopic and Computational Analysis of Diiron Complexes. Inorganic Chemistry, 2020, 59, 18141-18155.	4.0	11
7	Model Dimeric Manganese(IV) Complexes Featuring Terminal Tris-hydroxotetraazaadamantane and Various Bridging Ligands. Inorganic Chemistry, 2020, 59, 10768-10784.	4.0	8
8	Zr-Based MOFs for oxidative desulfurization: what matters?. Green Chemistry, 2020, 22, 6351-6356.	9.0	52
9	Valence tautomerism in a cobalt-verdazyl coordination compound. Chemical Communications, 2020, 56, 4400-4403.	4.1	18
10	Radical Dimerization in a Plastic Organic Crystal Leads to Structural and Magnetic Bistability with Wide Thermal Hysteresis. Journal of the American Chemical Society, 2019, 141, 17989-17994.	13.7	31
11	Transition metal-mediated reductive coupling of diazoesters. Chemical Communications, 2019, 55, 8458-8461.	4.1	10
12	Synthesis and characterization of novel polyethylene oxide–dinuclear Cu(II) complex electrospun nanofibers. Materials Letters, 2019, 238, 58-61.	2.6	6
13	Probing Fe–V Bonding in a <i>C</i> ₃ -Symmetric Heterobimetallic Complex. Inorganic Chemistry, 2018, 57, 5870-5878.	4.0	9
14	Square-planar Co(<scp>iii</scp>) in {O ₄ } coordination: large ZFS and reactivity with ROS. Chemical Communications, 2018, 54, 12045-12048.	4.1	9
15	Syntheses, Structures and Reactivity of Terminal Phosphido Complexes of Iron(II) Supported by a β-Diketiminato Ligand. European Journal of Inorganic Chemistry, 2018, 2018, 4298-4308.	2.0	17
16	Evidence of Ferrimagnetism in Fe-Doped CdSe Quantum Dots. Chemistry of Materials, 2018, 30, 8446-8456.	6.7	11
17	Observation of current rectification by the new bimetallic iron(<scp>iii</scp>) hydrophobe [Felll2(L ^{N4O6})] on Au LB-molecule Au devices. Dalton Transactions, 2018, 47, 14352-14361.	3.3	6
18	Light-induced magnetization changes in aggregated and isolated cobalt ferrite nanoparticles. Journal of Applied Physics, 2018, 124, .	2.5	5

#	Article	IF	Citations
19	Ba ₃ Fe _{1.56} Ir _{1.44} O ₉ : A Polar Semiconducting Triple Perovskite with Near Room Temperature Magnetic Ordering. Inorganic Chemistry, 2018, 57, 7362-7371.	4.0	6
20	Directed synthesis and magnetic properties of a hexanuclear ferric cluster. Polyhedron, 2018, 151, 446-451.	2.2	4
21	Catalytic Nitrene Homocoupling by an Iron(II) Bis(alkoxide) Complex: Bulking Up the Alkoxide Enables a Wider Range of Substrates and Provides Insight into the Reaction Mechanism. Inorganic Chemistry, 2018, 57, 9425-9438.	4.0	20
22	Dinuclear Metallacycles with Single M–X–M Bridges (X = Cl [–] , Br [–] ; M = Fe(II),) Chemistry, 2017, 56, 2884-2901.	Tj ETQq0 (4.0	0 0 rgBT /Ove 20
23	Chemical reaction within a compact non-porous crystal containing molecular clusters without the loss of crystallinity. Chemical Science, 2017, 8, 5356-5361.	7.4	20
24	Synthetic, Structural, and Spectroscopic Characterization of a Novel Family of High-Spin Iron(II) $[(\hat{l}^2\text{-Diketiminate})(\text{phosphanylphosphido})]$ Complexes. Inorganic Chemistry, 2017, 56, 11030-11042.	4.0	14
25	Heteroleptic Fe(II) Complexes with N ₄ S ₂ Coordination as a Platform for Designing Spin-Crossover Materials. Inorganic Chemistry, 2017, 56, 11096-11103.	4.0	17
26	Structural, Spectroscopic, and Theoretical Investigation of a T-Shaped [Fe ₃ (ν ₃ -O)] Cluster. Inorganic Chemistry, 2017, 56, 10861-10874.	4.0	6
27	Solid State Collapse of a High-Spin Square-Planar Fe(II) Complex, Solution Phase Dynamics, and Electronic Structure Characterization of an Fe(II) ₂ Dimer. Inorganic Chemistry, 2016, 55, 5191-5200.	4.0	12
28	Synthesis and Characterization of a Stable High-Valent Cobalt Carbene Complex. Journal of the American Chemical Society, 2016, 138, 5531-5534.	13.7	43
29	Spin Crossover in Fe(II) Complexes with N ₄ S ₂ Coordination. Inorganic Chemistry, 2016, 55, 5904-5913.	4.0	49
30	Intercalation of Coordinatively Unsaturated Fe ^{III} Ion within Interpenetrated Metal–Organic Framework MOFâ€5. Chemistry - A European Journal, 2016, 22, 7711-7715.	3.3	15
31	NO Disproportionation at a Mononuclear Site-Isolated Fe ²⁺ Center in Fe ²⁺ -MOF-5. Journal of the American Chemical Society, 2015, 137, 7495-7501.	13.7	96
32	Investigation of magnetic properties and electronic structure of layered-structure borides Al T 2 B 2 () Tj ETQq0 0	O.rgBT /O	verlock 10 Tf
33	Spectroscopic and Theoretical Investigation of a Complex with an [Oâ•FelV–O–FelVâ•O] Core Related to Methane Monooxygenase Intermediate Q. Journal of the American Chemical Society, 2014, 136, 1545-1558.	13.7	35
34	Hyperfine interactions and electron distribution in FellFel and FelFel models for the active site of the [FeFe]Âhydrogenases: Mössbauer spectroscopy studies of low-spin Fel. Journal of Biological Inorganic Chemistry, 2013, 18, 609-622.	2.6	12
35	Cyanobacterial Aldehyde Deformylase Oxygenation of Aldehydes Yields <i>n</i> – 1 Aldehydes and Alcohols in Addition to Alkanes. ACS Catalysis, 2013, 3, 2228-2238.	11.2	58
36	Xanthene-Modified and Hangman Iron Corroles. Inorganic Chemistry, 2011, 50, 1368-1377.	4.0	52

#	Article	IF	CITATIONS
37	Hangman Corroles: Efficient Synthesis and Oxygen Reaction Chemistry. Journal of the American Chemical Society, 2011, 133, 131-140.	13.7	197
38	EPR Evidence for Co(IV) Species Produced During Water Oxidation at Neutral pH. Journal of the American Chemical Society, 2010, 132, 6882-6883.	13.7	488
39	Mol´ssbauer, Electron Paramagnetic Resonance, and Magnetic Susceptibility Studies on Members of a New Family of Cyano-Bridged 3d-4f Complexes. Demonstration of Anisotropic Exchange in a Feâ´'Gd Complex. Inorganic Chemistry, 2010, 49, 3387-3401.	4.0	54
40	A High-Spin Organometallic Feâ^'S Compound: Structural and Mol^ssbauer Spectroscopic Studies of [Phenyltris((tert-butylthio)methyl)borate]Fe(Me). Inorganic Chemistry, 2009, 48, 8317-8324.	4.0	26
41	Ligand Reactivity in Diarylamido/Bis(Phosphine) PNP Complexes of Mn(CO) ₃ and Re(CO) ₃ . Inorganic Chemistry, 2009, 48, 9214-9221.	4.0	93
42	Mössbauer, Electron Paramagnetic Resonance, and Theoretical Study of a High-Spin, Four-Coordinate Fe(II) Diketiminate Complex. Inorganic Chemistry, 2008, 47, 8687-8695.	4.0	27
43	Properties of Prussian Blue Materials Manifested in Molecular Complexes:Â Observation of Cyanide Linkage Isomerism and Spin-Crossover Behavior in Pentanuclear Cyanide Clusters. Journal of the American Chemical Society, 2007, 129, 6104-6116.	13.7	204
44	Mössbauer and Computational Study of an N2-Bridged Diiron Diketiminate Complex: Parallel Alignment of the Iron Spins by Direct Antiferromagnetic Exchange with Activated Dinitrogen. Journal of the American Chemical Society, 2006, 128, 10181-10192.	13.7	77
45	Mössbauer, Electron Paramagnetic Resonance, and Crystallographic Characterization of a High-Spin Fe(I) Diketiminate Complex with Orbital Degeneracy. Inorganic Chemistry, 2005, 44, 4915-4922.	4.0	95