Herve Puy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8790272/publications.pdf

Version: 2024-02-01

61984 60623 7,484 148 43 81 citations h-index g-index papers 157 157 157 6691 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Porphyrias. Lancet, The, 2010, 375, 924-937.	13.7	644
2	Gene Therapy in a Patient with Sickle Cell Disease. New England Journal of Medicine, 2017, 376, 848-855.	27.0	567
3	Gene Therapy in Patients with Transfusion-Dependent \hat{I}^2 -Thalassemia. New England Journal of Medicine, 2018, 378, 1479-1493.	27.0	525
4	C-Terminal Deletions in the ALAS2 Gene Lead to Gain of Function and Cause X-linked Dominant Protoporphyria without Anemia or Iron Overload. American Journal of Human Genetics, 2008, 83, 408-414.	6.2	246
5	The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nature Genetics, 2002, 30, 27-28.	21.4	237
6	Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion. Journal of Hepatology, 2015, 62, 848-854.	3.7	228
7	Erythropoietic protoporphyria. Orphanet Journal of Rare Diseases, 2009, 4, 19.	2.7	178
8	Contribution of a Common Single-Nucleotide Polymorphism to the Genetic Predisposition for Erythropoietic Protoporphyria. American Journal of Human Genetics, 2006, 78, 2-14.	6.2	164
9	Inheritance in Erythropoietic Protoporphyria: A Common Wild-Type Ferrochelatase Allelic Variant With Low Expression Accounts for Clinical Manifestation. Blood, 1999, 93, 2105-2110.	1.4	140
10	Molecular Epidemiology and Diagnosis of PBG Deaminase Gene Defects in Acute Intermittent Porphyria. American Journal of Human Genetics, 1997, 60, 1373-1383.	6.2	139
11	Porphyrias: A 2015 update. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, 412-425.	1.5	132
12	Systematic Analysis of Molecular Defects in the Ferrochelatase Gene from Patients with Erythropoietic Protoporphyria. American Journal of Human Genetics, 1998, 62, 1341-1352.	6.2	128
13	ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis. Nature Genetics, 2012, 44, 170-173.	21.4	127
14	Hepatocellular carcinoma in patients with acute hepatic porphyria: frequency of occurrence and related factors. Journal of Hepatology, 2000, 32, 933-939.	3.7	124
15	Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochemical Journal, 2008, 411, 123-131.	3.7	120
16	Acute intermittent porphyria: prevalence of mutations in the porphobilinogen deaminase gene in blood donors in France. Journal of Internal Medicine, 1997, 242, 213-217.	6.0	110
17	Iron Regulatory Proteins Secure Mitochondrial Iron Sufficiency and Function. Cell Metabolism, 2010, 12, 194-201.	16.2	110
18	Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nature Genetics, 2012, 44, 174-177.	21.4	105

#	Article	IF	CITATIONS
19	Variegate Porphyria in Western Europe: Identification of PPOX Gene Mutations in 104 Families, Extent of Allelic Heterogeneity, and Absence of Correlation between Phenotype and Type of Mutation. American Journal of Human Genetics, 1999, 65, 984-994.	6.2	100
20	High prevalence of and potential mechanisms for chronic kidney disease in patients with acute intermittent porphyria. Kidney International, 2015, 88, 386-395.	5.2	84
21	ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria. Blood, 2011, 118, 1443-1451.	1.4	80
22	Diagnostic accuracy of serum hepcidin for iron deficiency in critically ill patients with anemia. Intensive Care Medicine, 2010, 36, 1044-1048.	8.2	79
23	Heterozygous Mutations in BMP6 Pro-peptide Lead to Inappropriate Hepcidin Synthesis and Moderate Iron Overload in Humans. Gastroenterology, 2016, 150, 672-683.e4.	1.3	73
24	From a dominant to an oligogenic model of inheritance with environmental modifiers in acute intermittent porphyria. Human Molecular Genetics, 2018, 27, 1164-1173.	2.9	73
25	Congenital erythropoietic porphyria: a single-observer clinical study of 29 cases. British Journal of Dermatology, 2012, 167, 901-913.	1.5	71
26	Fecal calprotectin in inflammatory bowel diseases: update and perspectives. Clinical Chemistry and Laboratory Medicine, 2017, 55, 474-483.	2.3	70
27	Mutation in human <i>CLPX</i> elevates levels of <i>\hat{l}'-</i> aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8045-E8052.	7.1	69
28	Human hereditary hepatic porphyrias. Clinica Chimica Acta, 2002, 325, 17-37.	1.1	66
29	A management algorithm for congenital erythropoietic porphyria derived from a study of 29 cases. British Journal of Dermatology, 2012, 167, 888-900.	1.5	66
30	Characterization of Mutations in the CPO Gene in British Patients Demonstrates Absence of Genotype-Phenotype Correlation and Identifies Relationship between Hereditary Coproporphyria and Harderoporphyria. American Journal of Human Genetics, 2001, 68, 1130-1138.	6.2	62
31	Iron Regulatory Protein 1 Sustains Mitochondrial Iron Loading and Function in Frataxin Deficiency. Cell Metabolism, 2015, 21, 311-323.	16.2	61
32	Increased plasma transferrin, altered body iron distribution, and microcytic hypochromic anemia in ferrochelatase-deficient mice. Blood, 2007, 109, 811-818.	1.4	58
33	Hepcidin regulates intrarenal iron handling at the distal nephron. Kidney International, 2013, 84, 756-766.	5.2	58
34	Variegate porphyria: diagnostic value of fluorometric scanning of plasma porphyrins. Clinica Chimica Acta, 1995, 238, 163-168.	1.1	56
35	Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations. Human Mutation, 2011, 32, 590-597.	2.5	56
36	A variant erythroferrone disrupts iron homeostasis in $\langle i \rangle SF3B1 \langle i \rangle$ -mutated myelodysplastic syndrome. Science Translational Medicine, 2019, 11, .	12.4	55

#	Article	IF	Citations
37	Mutations in the protoporphyrinogen oxidase gene in patients with variegate porphyria. Human Molecular Genetics, 1996, 5, 407-410.	2.9	54
38	Decreased nocturnal plasma melatonin levels in patients with recurrent acute intermittent porphyria attacks. Life Sciences, 1993, 53, 621-627.	4.3	52
39	Plasma N-terminal pro-brain natriuretic peptide and brain natriuretic peptide in assessment of acute dyspnea. Biomedicine and Pharmacotherapy, 2005, 59, 20-24.	5.6	52
40	Acute intermittent porphyria causes hepatic mitochondrial energetic failure in a mouse model. International Journal of Biochemistry and Cell Biology, 2014, 51, 93-101.	2.8	51
41	Epidemiology of hepatitis C and G in sporadic and familial porphyria cutanea tarda. Hepatology, 1998, 27, 848-852.	7.3	49
42	Molecular characterization of homozygous variegate porphyria. Human Molecular Genetics, 1998, 7, 1921-1925.	2.9	49
43	A Variant of Peptide Transporter 2 Predicts the Severity of Porphyria-Associated Kidney Disease. Journal of the American Society of Nephrology: JASN, 2017, 28, 1924-1932.	6.1	46
44	Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria. Human Molecular Genetics, 2005, 14, 3089-3098.	2.9	44
45	Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood, 2019, 133, 1358-1370.	1.4	44
46	Cardiac iron overload in chronically transfused patients with thalassemia, sickle cell anemia, or myelodysplastic syndrome. PLoS ONE, 2017, 12, e0172147.	2.5	44
47	LC-MS/MS method for hepcidin-25 measurement in human and mouse serum: clinical and research implications in iron disorders. Clinical Chemistry and Laboratory Medicine, 2015, 53, 1557-67.	2.3	43
48	Porphyria and kidney diseases. CKJ: Clinical Kidney Journal, 2018, 11, 191-197.	2.9	43
49	Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli. Journal of the American Society of Nephrology: JASN, 2016, 27, 835-846.	6.1	42
50	Modulation of penetrance by the wild-type allele in dominantly inherited erythropoietic protoporphyria and acute hepatic porphyrias. Human Genetics, 2004, 114, 256-262.	3.8	40
51	Increased delta aminolevulinic acid and decreased pineal melatonin production. A common event in acute porphyria studies in the rat Journal of Clinical Investigation, 1996, 97, 104-110.	8.2	40
52	Influence of Age and Gender on the Clinical Expression of Acute Intermittent Porphyria Based on Molecular Study of Porphobilinogen Deaminase Gene Among Swiss Patients. Molecular Medicine, 2001, 7, 535-542.	4.4	39
53	Protoporphyrin Retention in Hepatocytes and Kupffer Cells Prevents Sclerosing Cholangitis in Erythropoietic Protoporphyria Mouse Model. Gastroenterology, 2011, 141, 1509-1519.e3.	1.3	39
54	Molecular and functional analysis of the C-terminal region of human erythroid-specific 5-aminolevulinic synthase associated with X-linked dominant protoporphyria (XLDPP). Human Molecular Genetics, 2013, 22, 1280-1288.	2.9	39

#	Article	IF	CITATIONS
55	Iron deficiency diagnosed using hepcidin on critical care discharge is an independent risk factor for death and poor quality of life at one year: an observational prospective study on 1161 patients. Critical Care, 2018, 22, 314.	5.8	39
56	Molecular Characterization of Homozygous Variegate Porphyria. Human Molecular Genetics, 1998, 7, 1921-1925.	2.9	37
57	Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites. Blood, 2015, 125, 534-541.	1.4	37
58	Iron status and inflammatory biomarkers in patients with acutely decompensated heart failure: early inâ∈hospital phase and 30â∈day followâ∈up. European Journal of Heart Failure, 2017, 19, 1075-1076.	7.1	37
59	Protoporphyrinogen Oxidase: Complete Genomic Sequence and Polymorphisms in the Human Gene. Biochemical and Biophysical Research Communications, 1996, 226, 226-230.	2.1	36
60	Iron metabolism in patients with anorexia nervosa: elevated serum hepcidin concentrations in the absence of inflammation. American Journal of Clinical Nutrition, 2012, 95, 548-554.	4.7	36
61	Antisense Oligonucleotide-Based Therapy in Human Erythropoietic Protoporphyria. American Journal of Human Genetics, 2014, 94, 611-617.	6.2	34
62	Mitochondrial energetic defects in muscle and brain of a <i>Hmbs^{â^'/â^'}</i> mouse model of acute intermittent porphyria. Human Molecular Genetics, 2015, 24, 5015-5023.	2.9	34
63	Porphobilinogen deaminase gene structure and molecular defects. Journal of Bioenergetics and Biomembranes, 1995, 27, 197-205.	2.3	33
64	Acute Hepatic Porphyrias and Primary Liver Cancer. New England Journal of Medicine, 1998, 338, 1853-1854.	27.0	33
65	A mouse model provides evidence that genetic background modulates anemia and liver injury in erythropoietic protoporphyria. American Journal of Physiology - Renal Physiology, 2005, 288, G1208-G1216.	3.4	32
66	Hepatocellular carcinoma in acute hepatic porphyrias: A Damocles Sword. Molecular Genetics and Metabolism, 2019, 128, 236-241.	1.1	32
67	R <scp>eview</scp> : Molecular pathogenesis of hepatic acute porphyrias. Journal of Gastroenterology and Hepatology (Australia), 1996, 11, 1046-1052.	2.8	31
68	Exon 1 donor splice site mutations in the porphobilinogen deaminase gene in the non-erythroid variant form of acute intermittent porphyria. Human Genetics, 1998, 103, 570-575.	3.8	29
69	Role of two nutritional hepatic markers (insulinâ€like growth factor 1 and transthyretin) in the clinical assessment and followâ€up of acute intermittent porphyria patients. Journal of Internal Medicine, 2009, 266, 277-285.	6.0	28
70	Genetic Study of Variation in Normal Mouse Iron Homeostasis Reveals Ceruloplasmin as an HFE-Hemochromatosis Modifier Gene. Gastroenterology, 2007, 132, 679-686.	1.3	26
71	Loss of heterozygosity on 10q and mutational status of PTEN and BMPR1A in colorectal primary tumours and metastases. British Journal of Cancer, 2004, 90, 1230-1234.	6.4	25
72	Regulation and tissue-specific expression of $\hat{\Gamma}$ -aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias. Molecular Genetics and Metabolism, 2019, 128, 190-197.	1.1	25

#	Article	IF	CITATIONS
73	Pro-oxidant effect of ALA is implicated in mitochondrial dysfunction of HepG2 cells. Biochimie, 2014, 106, 157-166.	2.6	24
74	Renal Function Decline Under Therapy With Small Interfering RNA Silencing ALAS1 for Acute Intermittent Porphyria. Kidney International Reports, 2021, 6, 1904-1911.	0.8	24
75	Identification of a Prevalent Nonsense Mutation (W283X) and Two Novel Mutations in the Porphobilinogen Deaminase Gene of Swiss Patients with Acute Intermittent Porphyria. Human Heredity, 2000, 50, 247-250.	0.8	23
76	Acute hepatic and erythropoietic porphyrias: from ALA synthases 1 and 2 to new molecular bases and treatments. Current Opinion in Hematology, 2017, 24, 198-207.	2.5	23
77	Hepatocellular carcinoma without cirrhosis: think acute hepatic porphyrias and vice versa. Journal of Internal Medicine, 2011, 269, 521-524.	6.0	22
78	Erythroid-Progenitor-Targeted Gene Therapy Using Bifunctional TFR1 Ligand-Peptides in Human Erythropoietic Protoporphyria. American Journal of Human Genetics, 2019, 104, 341-347.	6.2	22
79	Urinary Metabolic Fingerprint of Acute Intermittent Porphyria Analyzed by ¹ H NMR Spectroscopy. Analytical Chemistry, 2014, 86, 2166-2174.	6.5	21
80	Three novel mutations in the coproporphyrinogen oxidase gene. Human Mutation, 1997, 9, 78-80.	2.5	20
81	Heme and acute inflammation. Role in vivo of heme in the hepatic expression of positive acute-phase reactants in rats. FEBS Journal, 1999, 261, 190-196.	0.2	20
82	Molecular abnormalities of coproporphyrinogen oxidase in patients with hereditary coproporphyria. Journal of Bioenergetics and Biomembranes, 1995, 27, 215-219.	2.3	19
83	Clinical measurement of Hepcidin-25 in human serum: Is quantitative mass spectrometry up to the job?. EuPA Open Proteomics, 2014, 3, 60-67.	2.5	19
84	GLRX5 mutations impair heme biosynthetic enzymes ALA synthase 2 and ferrochelatase in Human congenital sideroblastic anemia. Molecular Genetics and Metabolism, 2019, 128, 342-351.	1.1	19
85	Porphobilinogen deaminase gene in African and Afro-Caribbean ethnic groups: mutations causing acute intermittent porphyria and specific intragenic polymorphisms. Human Genetics, 2000, 107, 150-159.	3.8	18
86	Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release. Biochemistry, 2015, 54, 5617-5631.	2.5	18
87	Involvement of hepcidin in iron metabolism dysregulation in Gaucher disease. Haematologica, 2018, 103, 587-596.	3.5	18
88	Molecular analysis of porphobilinogen (PBC) deaminase gene mutations in acute intermittent porphyria: first study in patients of Slavic origin. Scandinavian Journal of Clinical and Laboratory Investigation, 1997, 57, 217-224.	1.2	17
89	Ancestral Founder of Mutation W283X in the Porphobilinogen Deaminase Gene among Acute Intermittent Porphyria Patients. Human Heredity, 2002, 54, 69-81.	0.8	17
90	Dyserythropoiesis evaluated by the RED score and hepcidin:ferritin ratio predicts response to erythropoietin in lower-risk myelodysplastic syndromes. Haematologica, 2019, 104, 497-504.	3.5	17

#	Article	IF	CITATIONS
91	Nitric oxide synthase inhibition and the induction of cytochrome P-450 affect heme oxygenase-1 messenger RNA expression after partial hepatectomy and acute inflammation in rats. Critical Care Medicine, 1998, 26, 1683-1689.	0.9	17
92	Givosiran in acute intermittent porphyria: A personalized medicine approach. Molecular Genetics and Metabolism, 2022, 135, 206-214.	1.1	17
93	Evaluation of mutation screening by heteroduplex analysis in acute intermittent porphyria: comparison with denaturing gradient gel electrophoresis. Clinica Chimica Acta, 1999, 279, 133-143.	1.1	16
94	International Porphyria Molecular Diagnostic Collaborative: an evidence-based database of verified pathogenic and benign variants for the porphyrias. Genetics in Medicine, 2019, 21, 2605-2613.	2.4	16
95	Iron chelation rescues hemolytic anemia and skin photosensitivity in congenital erythropoietic porphyria. Blood, 2020, 136, 2457-2468.	1.4	16
96	Analytical correlation between plasma N-terminal pro-brain natriuretic peptide and brain natriuretic peptide in patients presenting with dyspnea. Clinical Biochemistry, 2004, 37, 933-936.	1.9	15
97	Detection of Four Novel Mutations in the Porphobilinogen Deaminase Gene in French Caucasian Patients with Acute Intermittent Porphyria. Human Heredity, 1996, 46, 177-180.	0.8	14
98	A molecular, enzymatic and clinical study in a family with hereditary coproporphyria. Journal of Inherited Metabolic Disease, 2002, 25, 279-286.	3.6	14
99	Does IV Iron Induce Plasma Oxidative Stress in Critically III Patients? A Comparison With Healthy Volunteers*. Critical Care Medicine, 2016, 44, 521-530.	0.9	13
100	Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from GÃ $\frac{1}{4}$ nther disease model. Haematologica, 2017, 102, 260-270.	3.5	13
101	High urinary ferritin reflects myoglobin iron evacuation in DMD patients. Neuromuscular Disorders, 2018, 28, 564-571.	0.6	13
102	Phlebotomy as an efficient long-term treatment of congenital erythropoietic porphyria. Haematologica, 2021, 106, 913-917.	3.5	13
103	Isoniazid inhibits human erythroid 5-aminolevulinate synthase: Molecular mechanism and tolerance study with four X-linked protoporphyria patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 428-439.	3.8	12
104	Mutations in the Ferrochelatase Gene of Four Spanish Patients with Erythropoietic Protoporphyria. Journal of Investigative Dermatology, 1998, 111, 406-409.	0.7	11
105	A homoallelic <i>FECH</i> mutation in a patient with both erythropoietic protoporphyria and palmar keratoderma. Journal of the European Academy of Dermatology and Venereology, 2010, 24, 1349-1353.	2.4	11
106	Late-Onset X-Linked Dominant Protoporphyria: An Etiology of Photosensitivity in the Elderly. Journal of Investigative Dermatology, 2013, 133, 1688-1690.	0.7	11
107	Extrahepatic hepcidin production: The intriguing outcomes of recent years. World Journal of Clinical Cases, 2019, 7, 1926-1936.	0.8	11
108	Iron, Heme Synthesis and Erythropoietic Porphyrias: A Complex Interplay. Metabolites, 2021, 11, 798.	2.9	11

#	Article	IF	CITATIONS
109	Hemochromatosis (HFE) and transferrin receptor-1 (TFRC1) genes in sporadic porphyria cutanea tarda (sPCT). Cellular and Molecular Biology, 2002, 48, 33-41.	0.9	11
110	Towards a Common Definition for the Diagnosis of Iron Deficiency in Chronic Inflammatory Diseases. Nutrients, 2022, 14, 1039.	4.1	11
111	New mutations of the hydroxymethylbilane synthase gene in German patients with acute intermittent porphyria. Molecular and Cellular Probes, 1999, 13, 443-447.	2.1	10
112	Melatonin and Environmental Lighting Regulate ALAâ€6 Gene Expression and So Porphyrin Biosynthesis in the Rat Harderian Gland. Chronobiology International, 2008, 25, 851-867.	2.0	10
113	A mutation in the iron-responsive element of <i>ALAS2</i> is a modifier of disease severity in a patient suffering from <i>CLPX</i> associated erythropoietic protoporphyria. Haematologica, 2021, 106, 2030-2033.	3.5	10
114	PXR-ALAS1: A key regulatory pathway in liver toxicity induced by isoniazid-rifampicin antituberculosis treatment. Clinics and Research in Hepatology and Gastroenterology, 2013, 37, 439-441.	1.5	9
115	Impact of iron deficiency diagnosis using hepcidin mass spectrometry dosage methods on hospital stay and costs after a prolonged ICU stay: Study protocol for a multicentre, randomised, single-blinded medico-economic trial. Anaesthesia, Critical Care & Damp; Pain Medicine, 2017, 36, 391-396.	1.4	9
116	Results of a pilot study of isoniazid in patients with erythropoietic protoporphyria. Molecular Genetics and Metabolism, 2019, 128, 309-313.	1,1	9
117	Comprehensive cytochrome P450 CYP1A2 gene analysis in French caucasian patients with familial and sporadic porphyria cutanea tarda. British Journal of Dermatology, 2012, 166, 425-429.	1.5	8
118	Thyroid hormone extraction by plasma exchange: a study of extraction rate. Biomedicine and Pharmacotherapy, 1992, 46, 413-417.	5.6	7
119	Acute Intermittent Porphyria: From Clinical to Molecular Aspects. , 2003, , 23-41.		7
120	An Uncommon Option for Surviving Bariatric Surgery: Regaining Weight!. American Journal of Medicine, 2012, 125, e1-e2.	1.5	7
121	Urinary metabolic profiling of asymptomatic acute intermittent porphyria using a rule-mining-based algorithm. Metabolomics, 2018, 14, 10.	3.0	7
122	Genetic background influences hepcidin response to iron imbalance in a mouse model of hemolytic anemia (Congenital erythropoietic porphyria). Biochemical and Biophysical Research Communications, 2019, 520, 297-303.	2.1	7
123	Kidney transplantation improves the clinical outcomes of Acute Intermittent Porphyria. Molecular Genetics and Metabolism, 2020, 131, 259-266.	1.1	7
124	lloprost Use in Patients with Persistent Intestinal Ischemia Unsuitable for Revascularization. Annals of Vascular Surgery, 2017, 42, 128-135.	0.9	6
125	Analytical comparison of ELISA and mass spectrometry for quantification of serum hepcidin in critically ill patients. Bioanalysis, 2021, 13, 1029-1035.	1.5	6
126	Identification of novel UROS mutations in a patient with congenital erythropoietic porphyria and efficient treatment by phlebotomy. Molecular Genetics and Metabolism Reports, 2021, 27, 100722.	1.1	5

#	Article	IF	Citations
127	Biochemical compared to molecular diagnosis in acute intermittent porphyria. Journal of Inherited Metabolic Disease, 2006, 29, 157-161.	3.6	4
128	GNPAT polymorphism rs11558492 is not associated with increased severity in a large cohort of HFE p.Cys282Tyr homozygous patients. Hepatology, 2017, 65, 1069-1071.	7.3	4
129	Functional erythropoietinâ€hepcidin axis in recombinant human erythropoietin independent haemodialysis patients. Nephrology, 2019, 24, 751-757.	1.6	4
130	Systemic Administered mRNA as Therapy for Metabolic Diseases. Trends in Molecular Medicine, 2019, 25, 3-5.	6.7	4
131	Hepcidin and Iron Deficiency in Women One Year after Sleeve Gastrectomy: A Prospective Cohort Study. Nutrients, 2021, 13, 2516.	4.1	4
132	Update from the Hgb-205 Phase 1/2 Clinical Study of Lentiglobin Gene Therapy: Sustained Clinical Benefit in Severe Hemoglobinopathies. Blood, 2016, 128, 2311-2311.	1.4	4
133	TSPO2 translocates 5â€aminolevulinic acid into human erythroleukemia cells. Biology of the Cell, 2020, 112, 113-126.	2.0	3
134	Immunological specificity of monoclonal antibodies to Chlamydia psittaci ovine abortion strain. Immunology Letters, 1990, 23, 217-221.	2.5	2
135	Heme Biosynthesis and Pathophysiology of Porphyrias. Handbook of Porphyrin Science, 2013, , 89-118.	0.8	2
136	Reply. Gastroenterology, 2016, 151, 771-772.	1.3	2
137	ABCB6 Polymorphisms are not Overly Represented in Patients with Porphyria. Blood Advances, 2021, , .	5. 2	2
138	Acute porphyric attack mimicking HIV-associated progressive polyradiculoneuropathy. Médecine Et Maladies Infectieuses, 2011, 41, 441-443.	5.0	1
139	Characterization and origin of heme precursors in amniotic fluid: lessons from normal and pathological pregnancies. Pediatric Research, 2018, 84, 80-84.	2.3	1
140	Crosstalk between Acidosis and Iron Metabolism: Data from In Vivo Studies. Metabolites, 2022, 12, 89.	2.9	1
141	Heme-arginate in the treatment of acute porphyrias : effect on iron metabolism and heme catabolites. Journal of Hepatology, 2001, 34, 197-198.	3.7	0
142	Chediak-Steinbrinck-Higashi Syndrome. , 2009, , 314-314.		0
143	Epistasis in iron metabolism: complex interactions between Cp, Mon1a, and Slc40a1 loci and tissue iron in mice. Mammalian Genome, 2013, 24, 427-438.	2.2	0
144	P442 N terminal brain natriuretic peptide versus brain natriuretic peptide for the diagnosis of heart failure in patients over 75 years old. European Heart Journal, 2003, 24, 62.	2.2	0

#	ARTICLE	IF	CITATIONS
145	Les porphyries héréditaires : anomalies du métabolisme de l'hÃ"me. Bulletin De L'Academie Nationale D Medecine, 2014, 198, 1069-1093.	0.0	O
146	Erythropoietic Protoporphyric Red Blood Cells Are Resistant to the Growth of Malarial Parasites. Blood, 2014, 124, 2670-2670.	1.4	0
147	Assessment of Cardiac Iron Overload in Chonically Transfused Patients with Thalassemia, Sickle Cell Anemia, and Myelodysplastic Syndromes. Blood, 2015, 126, 2151-2151.	1.4	O
148	A Dominant Mutation in Mitochondrial Unfoldase CLPX Results in Erythropoietic Protoporphyria. Blood, 2016, 128, 77-77.	1.4	0