Ming Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8790139/publications.pdf Version: 2024-02-01

MING HANG

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene, 2002, 21, 6041-6048.	5.9	347
3	Cancer-Specific Functions of SIRT1 Enable Human Epithelial Cancer Cell Growth and Survival. Cancer Research, 2005, 65, 10457-10463.	0.9	297
4	Altered TGF-β Signaling in a Subpopulation of Human Stromal Cells Promotes Prostatic Carcinogenesis. Cancer Research, 2011, 71, 1272-1281.	0.9	158
5	Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development (Cambridge), 2005, 132, 3431-3443.	2.5	157
6	Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes and Development, 2003, 17, 832-837.	5.9	131
7	JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle, 2008, 7, 3091-3097.	2.6	114
8	Activation of βâ€Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate, 2009, 69, 249-262.	2.3	92
9	Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2521-2526.	7.1	86
10	ALCAM/CD166 Is a TGF-β–Responsive Marker and Functional Regulator of Prostate Cancer Metastasis to Bone. Cancer Research, 2014, 74, 1404-1415.	0.9	69
11	Functional Remodeling of Benign Human Prostatic Tissues <i>In Vivo</i> by Spontaneously Immortalized Progenitor and Intermediate Cells. Stem Cells, 2010, 28, 344-356.	3.2	68
12	Tissue-Specific Consequences of Cyclin D1 Overexpression in Prostate Cancer Progression. Cancer Research, 2007, 67, 8188-8197.	0.9	59
13	Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. Aging, 2009, 1, 316-327.	3.1	50
14	p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene, 2001, 20, 5449-5458.	5.9	45
15	Gel-Based Application of siRNA to Human Epithelial Cancer Cells Induces RNAi-Dependent Apoptosis. Oligonucleotides, 2004, 14, 239-248.	2.7	42
16	PPARγ: A molecular link between systemic metabolic disease and benign prostate hyperplasia. Differentiation, 2011, 82, 220-236.	1.9	41
17	Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. Journal of Endocrinology, 2012, 213, 173-182.	2.6	39
18	The Stress Response Mediator ATF3 Represses Androgen Signaling by Binding the Androgen Receptor. Molecular and Cellular Biology, 2012, 32, 3190-3202.	2.3	38

Ming Jiang

#	Article	IF	CITATIONS
19	Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology. Asian Journal of Andrology, 2015, 17, 942.	1.6	36
20	Methodologies in Assaying Prostate Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 85-138.	0.9	34
21	Critical and Distinct Roles of p16 and Telomerase in Regulating the Proliferative Life Span of Normal Human Prostate Epithelial Progenitor Cells. Journal of Biological Chemistry, 2008, 283, 27957-27972.	3.4	32
22	SPARCL1 suppresses metastasis in prostate cancer. Molecular Oncology, 2013, 7, 1019-1030.	4.6	32
23	Cathepsin D acts as an essential mediator to promote malignancy of benign prostatic epithelium. Prostate, 2013, 73, 476-488.	2.3	29
24	Approaches to understanding the importance and clinical implications of peroxisome proliferator-activated receptor gamma (PPAR?) signaling in prostate cancer. Journal of Cellular Biochemistry, 2004, 91, 513-527.	2.6	27
25	Advances in prostate cancer research models: From transgenic mice to tumor xenografting models. Asian Journal of Urology, 2016, 3, 64-74.	1.2	25
26	Deficiency in Metabolic Regulators PPARÎ ³ and PTEN Cooperates to Drive Keratinizing Squamous Metaplasia in Novel Models of Human Tissue Regeneration. American Journal of Pathology, 2013, 182, 449-459.	3.8	22
27	Selective Silencing of Viral Gene E6 and E7 Expression in HPV-Positive Human Cervical Carcinoma Cells Using Small Interfering RNAs. , 2005, 292, 401-420.		21
28	Autophagy in nuclear receptor PPARÎ ³ -deficient mouse prostatic carcinogenesis. Autophagy, 2010, 6, 175-176.	9.1	20
29	A bi-functional siRNA construct induces RNA interference and also primes PCR amplification for its own quantification. Nucleic Acids Research, 2005, 33, e151-e151.	14.5	18
30	Evaluation of public cancer datasets and signatures identifies TP53 mutant signatures with robust prognostic and predictive value. BMC Cancer, 2015, 15, 179.	2.6	15
31	Inhibition of autophagy aggravated 4-nitrophenol-induced oxidative stress and apoptosis in NHPrE1 human normal prostate epithelial progenitor cells. Regulatory Toxicology and Pharmacology, 2017, 87, 88-94.	2.7	15
32	TR4 nuclear receptor enhances prostate cancer initiation via altering the stem cell population and EMT signals in the PPARG-deleted prostate cells. Oncoscience, 2015, 2, 142-150.	2.2	12
33	Androgen receptor differentially regulates the proliferation of prostatic epithelial cells <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 70404-70419.	1.8	10
34	Spontaneous immortalization of human dermal microvascular endothelial cells. World Journal of Stem Cells, 2010, 2, 114.	2.8	8
35	Functions of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Gynecologic Disorders. Clinical Medicine Insights: Oncology, 2015, 9, CMO.S23527.	1.3	6
36	Interplay between autophagy and metabolism in Ras mutation-induced tumorigenesis. Asian Journal of Andrology, 2011, 13, 610-611.	1.6	1

#	Article	IF	CITATIONS
37	Glandular Stem Cells (GSCs): Stem Cells in Glandular Organs. , 2013, , 223-233.		Ο