Michael Robert Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of CRTH2 antagonism on the response to experimental rhinovirus infection in asthma: a pilot randomised controlled trial. Thorax, 2022, 77, 950-959.	5.6	7
2	Type I conventional dendritic cells relate to disease severity in virusâ€induced asthma exacerbations. Clinical and Experimental Allergy, 2022, 52, 550-560.	2.9	3
3	Rhinovirus-induced CCL17 and CCL22 in Asthma Exacerbations and Differential Regulation by STAT6. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 344-356.	2.9	13
4	miR-122 promotes virus-induced lung disease by targeting SOCS1. JCl Insight, 2021, 6, .	5.0	17
5	Virus-induced Volatile Organic Compounds Are Detectable in Exhaled Breath during Pulmonary Infection. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1075-1085.	5.6	13
6	Pulmonary Innate Lymphoid Cell Responses during Rhinovirus-induced Asthma Exacerbations <i>InÁVivo</i> : A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1259-1273.	5.6	22
7	Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Scientific Reports, 2021, 11, 23741.	3.3	6
8	Exacerbations of chronic respiratory diseases. , 2019, , 137-168.		3
9	Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Science Translational Medicine, 2019, 11, .	12.4	75
10	Airway Epithelial Cells Generate Pro-inflammatory Tenascin-C and Small Extracellular Vesicles in Response to TLR3 Stimuli and Rhinovirus Infection. Frontiers in Immunology, 2019, 10, 1987.	4.8	38
11	Human Rhinovirus Impairs the Innate Immune Response to Bacteria in Alveolar Macrophages in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1496-1507.	5.6	42
12	Development and characterization of DNAzyme candidates demonstrating significant efficiency against human rhinoviruses. Journal of Allergy and Clinical Immunology, 2019, 143, 1403-1415.	2.9	23
13	Bronchial mucosal IFN-α/β and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology, 2019, 143, 114-125.e4.	2.9	65
14	Cytokine Responses to Rhinovirus and Development of Asthma, Allergic Sensitization, and Respiratory Infections during Childhood. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1265-1274.	5.6	73
15	β ₂ -Agonists Enhance Asthma-Relevant Inflammatory Mediators in Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 128-132.	2.9	17
16	Innate Immune Response to Viral Infections in Primary Bronchial Epithelial Cells is Modified by the Atopic Status of Asthmatic Patients. Allergy, Asthma and Immunology Research, 2018, 10, 144.	2.9	23
17	Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nature Communications, 2018, 9, 2229.	12.8	153
18	Mucosal Type 2 Innate Lymphoid Cells Are a Key Component of the Allergic Response to Aeroallergens. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1586-1596.	5.6	71

MICHAEL ROBERT EDWARDS

#	Article	IF	CITATIONS
19	Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nature Medicine, 2017, 23, 681-691.	30.7	260
20	Addressing unmet needs in understanding asthma mechanisms. European Respiratory Journal, 2017, 49, 1602448.	6.7	47
21	Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness. Journal of Allergy and Clinical Immunology, 2017, 140, 909-920.	2.9	178
22	Vitamin D increases the antiviral activity of bronchial epithelial cells inÂvitro. Antiviral Research, 2017, 137, 93-101.	4.1	123
23	Rhinovirus induction of fractalkine (CX3CL1) in airway and peripheral blood mononuclear cells in asthma. PLoS ONE, 2017, 12, e0183864.	2.5	7
24	Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathogens, 2017, 13, e1006577.	4.7	48
25	Reduced sputum expression of interferon-stimulated genes in severe COPD. International Journal of COPD, 2016, Volume 11, 1485-1494.	2.3	16
26	Antiâ€inflammatory effects of the novel inhaled phosphodiesterase type 4 inhibitor <scp>CHF</scp> 6001 on virusâ€inducible cytokines. Pharmacology Research and Perspectives, 2016, 4, e00202.	2.4	16
27	Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. Journal of Antimicrobial Chemotherapy, 2016, 71, 2767-2781.	3.0	40
28	Interferon response of the cystic fibrosis bronchial epithelium to major and minor group rhinovirus infection. Journal of Cystic Fibrosis, 2016, 15, 332-339.	0.7	28
29	Interleukin-18 Is Associated With Protection Against Rhinovirus-Induced Colds and Asthma Exacerbations. Clinical Infectious Diseases, 2015, 60, 1528-1531.	5.8	19
30	The influence of asthma control on the severity of virus-induced asthma exacerbations. Journal of Allergy and Clinical Immunology, 2015, 136, 497-500.e3.	2.9	42
31	Increased nuclear suppressor of cytokine signaling 1 in asthmatic bronchial epithelium suppresses rhinovirus induction of innate interferons. Journal of Allergy and Clinical Immunology, 2015, 136, 177-188.e11.	2.9	89
32	Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. European Respiratory Journal, 2015, 45, 428-439.	6.7	134
33	Pathogen Sensing Pathways in Human Embryonic Stem Cell Derived-Endothelial Cells: Role of NOD1 Receptors. PLoS ONE, 2014, 9, e91119.	2.5	16
34	CXC chemokines and antimicrobial peptides in rhinovirusâ€induced experimental asthma exacerbations. Clinical and Experimental Allergy, 2014, 44, 930-939.	2.9	47
35	Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Science Translational Medicine, 2014, 6, 256ra134.	12.4	280
36	Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax, 2014, 69, 240-246.	5.6	121

#	Article	IF	CITATIONS
37	IL-33–Dependent Type 2 Inflammation during Rhinovirus-induced Asthma Exacerbations <i>In Vivo</i> . American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1373-1382.	5.6	500
38	The role of macrolides in asthma: current evidence and future directions. Lancet Respiratory Medicine,the, 2014, 2, 657-670.	10.7	89
39	IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunology, 2014, 7, 1151-1164.	6.0	47
40	Anti-viral agents: potential utility in exacerbations of asthma. Current Opinion in Pharmacology, 2013, 13, 331-336.	3.5	14
41	Obesity and susceptibility to severe outcomes following respiratory viral infection. Thorax, 2013, 68, 684-686.	5.6	76
42	Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunology, 2013, 6, 797-806.	6.0	198
43	TLR3, TLR4 and TLRs7–9 Induced Interferons Are Not Impaired in Airway and Blood Cells in Well Controlled Asthma. PLoS ONE, 2013, 8, e65921.	2.5	39
44	Lack of an exaggerated inflammatory response on virus infection in cystic fibrosis. European Respiratory Journal, 2012, 39, 297-304.	6.7	43
45	Impaired type I and type III interferon induction and rhinovirus control in human cystic fibrosis airway epithelial cells. Thorax, 2012, 67, 517-525.	5.6	36
46	Nuclear Suppressor Of Cytokine Signalling-1 Suppresses Rhinovirus Induced Interferon Expression And Is Associated With Impaired Interferon Expression In Asthma. , 2012, , .		0
47	Reduced NF-ŰB P65 Expression Inhibits Rhinovirus-Induced Inflammation Without Compromising Antiviral Immunity. , 2012, , .		0
48	RSV infection modulates IL-15 production and MICA levels in respiratory epithelial cells. European Respiratory Journal, 2012, 39, 712-720.	6.7	41
49	Defining critical roles for NFâ€₽̂B p65 and type I interferon in innate immunity to rhinovirus. EMBO Molecular Medicine, 2012, 4, 1244-1260.	6.9	80
50	Rhinovirus 16–induced IFN-α and IFN-β are deficient in bronchoalveolar lavage cells in asthmatic patients. Journal of Allergy and Clinical Immunology, 2012, 129, 1506-1514.e6.	2.9	190
51	Viral Toll Like Receptor activation of pulmonary vascular smooth muscle cells results in endothelin-1 generation; relevance to pathogenesis of pulmonary arterial hypertension. Biochemical and Biophysical Research Communications, 2012, 426, 486-491.	2.1	33
52	Rhinovirus Induced Type 1 Interferon (-α And –β) Are Deficient In BAL Cells In Asthma But Interferon Induction Pathways Appear Intact. , 2012, , .		0
53	Rhinovirus Induces IL-4, IL-5 And IL-13 In The Airways In Asthma But Not In Non-Atopic Subjects. , 2012, , .		0
54	The microbiology of asthma. Nature Reviews Microbiology, 2012, 10, 459-471.	28.6	170

4

#	Article	IF	CITATIONS
55	Type I Interferon Regulates Antiviral And Inflammatory Responses To Rhinovirus Infection In Vivo. , 2011, , .		0
56	Interferonâ€lambda as a new approach for treatment of allergic asthma?. EMBO Molecular Medicine, 2011, 3, 306-308.	6.9	15
57	The Airway Epithelium: Soldier in the Fight against Respiratory Viruses. Clinical Microbiology Reviews, 2011, 24, 210-229.	13.6	541
58	RSV-Induced Bronchial Epithelial Cell PD-L1 Expression Inhibits CD8+ T Cell Nonspecific Antiviral Activity. Journal of Infectious Diseases, 2011, 203, 85-94.	4.0	66
59	The Airway Epithelium: Soldier in the Fight against Respiratory Viruses. Clinical Microbiology Reviews, 2011, 24, 631-631.	13.6	5
60	Role of Interleukin-1 and MyD88-Dependent Signaling in Rhinovirus Infection. Journal of Virology, 2011, 85, 7912-7921.	3.4	38
61	Experimental Rhinovirus Infection as a Human Model of Chronic Obstructive Pulmonary Disease Exacerbation. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 734-742.	5.6	349
62	Retinoic Acid-inducible Gene I-inducible miR-23b Inhibits Infections by Minor Group Rhinoviruses through Down-regulation of the Very Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 2011, 286, 26210-26219.	3.4	45
63	The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations. PLoS Pathogens, 2011, 7, e1002114.	4.7	58
64	ATS Abstract: IKK-ß Is Required For Rhinovirus Induced IFN-ß, IFN-» And Pro-inflammatory Cytokine Production In Vitro And In Vivo. , 2010, , .		0
65	Azithromycin induces anti-viral responses in bronchial epithelial cells. European Respiratory Journal, 2010, 36, 646-654.	6.7	270
66	Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-ÂB and EGFR pathways. European Respiratory Journal, 2010, 36, 1425-1435.	6.7	99
67	Co-ordinated Role of TLR3, RIG-I and MDA5 in the Innate Response to Rhinovirus in Bronchial Epithelium. PLoS Pathogens, 2010, 6, e1001178.	4.7	286
68	Mechanisms of adverse effects of Â-agonists in asthma. Thorax, 2009, 64, 739-741.	5.6	33
69	Targeting the NF-κB pathway in asthma and chronic obstructive pulmonary disease. , 2009, 121, 1-13.		323
70	Respiratory virus induction of alphaâ€, beta―and lambdaâ€interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 375-386.	5.7	192
71	Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nature Medicine, 2008, 14, 199-204.	30.7	339
72	Deficient interferon in virusâ€induced asthma exacerbations. Clinical and Experimental Allergy, 2008, 38, 1416-1418.	2.9	6

#	Article	IF	CITATIONS
73	Role of Xanthine Oxidase Activation and Reduced Glutathione Depletion in Rhinovirus Induction of Inflammation in Respiratory Epithelial Cells. Journal of Biological Chemistry, 2008, 283, 28595-28606.	3.4	50
74	Corticosteroids and β2 Agonists Differentially Regulate Rhinovirus-induced Interleukin-6 via Distinct Cis-acting Elements. Journal of Biological Chemistry, 2007, 282, 15366-15375.	3.4	68
75	Protein kinase R, lκB kinase-β and NF-κB are required for human rhinovirus induced pro-inflammatory cytokine production in bronchial epithelial cells. Molecular Immunology, 2007, 44, 1587-1597.	2.2	41
76	Signalling pathways mediating type I interferon gene expression. Microbes and Infection, 2007, 9, 1245-1251.	1.9	21
77	New treatment regimes for virus-induced exacerbations of asthma. Pulmonary Pharmacology and Therapeutics, 2006, 19, 320-334.	2.6	30
78	Role of deficient type III interferon-λ production in asthma exacerbations. Nature Medicine, 2006, 12, 1023-1026.	30.7	955
79	Combination Therapy. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 616-624.	2.9	97
80	Rhinovirus Replication in Human Macrophages Induces NF-κB-Dependent Tumor Necrosis Factor Alpha Production. Journal of Virology, 2006, 80, 8248-8258.	3.4	93
81	Toll-Like Receptor 3 Is Induced by and Mediates Antiviral Activity against Rhinovirus Infection of Human Bronchial Epithelial Cells. Journal of Virology, 2005, 79, 12273-12279.	3.4	210
82	IL-1β induces IL-8 in bronchial cells via NF-κB and NF-IL6 transcription factors and can be suppressed by glucocorticoids. Pulmonary Pharmacology and Therapeutics, 2005, 18, 337-345.	2.6	36
83	Analysis of IgE Antibodies from a Patient with Atopic Dermatitis: Biased V Gene Usage and Evidence for Polyreactive IgE Heavy Chain Complementarity-Determining Region 3. Journal of Immunology, 2002, 168, 6305-6313.	0.8	34
84	The â€~primitive' microaerophile Giardia intestinalis (syn. lamblia, duodenalis) has specialized membranes with electron transport and membrane-potential-generating functions. Microbiology (United) Tj ETQq0 0 0 rgBT /	Overlock :	103 0 f 50 297

85	Valency or wälency: Is the epitope diversity of the Bâ€cell response regulated or chemically determined?. Immunology and Cell Biology, 2001, 79, 507-511.	2.3	7
86	The microaerophilic flagellate Giardia intestinalis: oxygen and its reaction products collapse membrane potential and cause cytotoxicity. Microbiology (United Kingdom), 2000, 146, 3109-3118.	1.8	38