Jessica Ann Gephart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878928/publications.pdf

Version: 2024-02-01

47 papers

3,496 citations

201674 27 h-index 214800 47 g-index

48 all docs

48 docs citations

48 times ranked

3379 citing authors

#	Article	IF	CITATIONS
1	An Overview of Retail Sales of Seafood in the USA, 2017–2019. Reviews in Fisheries Science and Aquaculture, 2022, 30, 259-270.	9.1	28
2	Continuity and change in the contemporary Pacific food system. Global Food Security, 2022, 32, 100608.	8.1	19
3	China's seafood imports—Not for domestic consumption?. Science, 2022, 375, 386-388.	12.6	42
4	Conceptualizing ecosystem services using social–ecological networks. Trends in Ecology and Evolution, 2022, 37, 211-222.	8.7	32
5	Sustainable optimization of global aquatic omega-3 supply chain could substantially narrow the nutrient gap. Resources, Conservation and Recycling, 2022, 181, 106260.	10.8	11
6	Affordability influences nutritional quality of seafood consumption among income and race/ethnicity groups in the United States. American Journal of Clinical Nutrition, 2022, 116, 415-425.	4.7	11
7	Environmental and nutritional double bottom lines in aquaculture. One Earth, 2022, 5, 324-328.	6.8	10
8	The vital roles of blue foods in the global food system. Global Food Security, 2022, 33, 100637.	8.1	37
9	Study Protocol: Interactive Dynamics of Coral Reef Fisheries and the Nutrition Transition in Kiribati. Frontiers in Public Health, 2022, 10, .	2.7	3
10	Scenarios for Global Aquaculture and Its Role in Human Nutrition. Reviews in Fisheries Science and Aquaculture, 2021, 29, 122-138.	9.1	92
11	Early effects of COVIDâ€19 on US fisheries and seafood consumption. Fish and Fisheries, 2021, 22, 232-239.	5.3	101
12	Risks shift along seafood supply chains. Global Food Security, 2021, 28, 100476.	8.1	23
13	Time to rethink trophic levels in aquaculture policy. Reviews in Aquaculture, 2021, 13, 1583-1593.	9.0	31
14	Securing a sustainable future for US seafood in the wake of a global crisis. Marine Policy, 2021, 124, 104328.	3.2	22
15	Emerging COVID-19 impacts, responses, and lessons for building resilience in the seafood system. Global Food Security, 2021, 28, 100494.	8.1	151
16	Exploring sustainable aquaculture development using a nutrition-sensitive approach. Global Environmental Change, 2021, 69, 102285.	7.8	10
17	Aquatic foods to nourish nations. Nature, 2021, 598, 315-320.	27.8	226
18	Social-ecological traps link food systems to nutritional outcomes. Global Food Security, 2021, 30, 100561.	8.1	28

#	Article	IF	Citations
19	Environmental performance of blue foods. Nature, 2021, 597, 360-365.	27.8	233
20	Compound climate risks threaten aquatic food system benefits. Nature Food, 2021, 2, 673-682.	14.0	48
21	Blue food demand across geographic and temporal scales. Nature Communications, 2021, 12, 5413.	12.8	110
22	Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals. Food Policy, 2021, 104, 102163.	6.0	110
23	Towards food supply chain resilience to environmental shocks. Nature Food, 2021, 2, 54-65.	14.0	169
24	Reorientation of aquaculture production systems can reduce environmental impacts and improve nutrition security in Bangladesh. Nature Food, 2020, 1, 640-647.	14.0	14
25	Consequences of seafood mislabeling for marine populations and fisheries management. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30318-30323.	7.1	59
26	Integrating Life Cycle and Impact Assessments to Map Food's Cumulative Environmental Footprint. One Earth, 2020, 3, 65-78.	6.8	16
27	Simulating the Cascading Effects of an Extreme Agricultural Production Shock: Global Implications of a Contemporary US Dust Bowl Event. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	24
28	Global Seafood Trade. , 2019, , 93-97.		2
29	Putting all foods on the same table: Achieving sustainable food systems requires full accounting. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18152-18156.	7.1	66
30	To create sustainable seafood industries, the United States needs a better accounting of imports and exports. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9142-9146.	7.1	57
31	Cohort Description of the Madagascar Health and Environmental Research–Antongil (MAHERY–Antongil) Study in Madagascar. Frontiers in Nutrition, 2019, 6, 109.	3.7	12
32	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	23.0	446
33	Resilience in the global food system. Environmental Research Letters, 2017, 12, 025010.	5.2	100
34	The `seafood gap' in the food-water nexus literatureâ€"issues surrounding freshwater use in seafood production chains. Advances in Water Resources, 2017, 110, 505-514.	3.8	55
35	Trade: A Driver of Present and Future Ecosystems. Ecosystems, 2017, 20, 44-53.	3.4	21
36	Shocks to fish production: Identification, trends, and consequences. Global Environmental Change, 2017, 42, 24-32.	7.8	75

#	Article	IF	CITATIONS
37	Does Aquaculture Support the Needs of Nutritionally Vulnerable Nations?. Frontiers in Marine Science, 2017, 4, .	2.5	59
38	Vulnerability to shocks in the global seafood trade network. Environmental Research Letters, 2016, 11, 035008.	5.2	92
39	Meeting future food demand with current agricultural resources. Global Environmental Change, 2016, 39, 125-132.	7.8	277
40	Past and present biophysical redundancy of countries as a buffer to changes in food supply. Environmental Research Letters, 2016, 11, 055008.	5.2	29
41	Reserves and trade jointly determine exposure to food supply shocks. Environmental Research Letters, 2016, 11, 095009.	5.2	88
42	The environmental cost of subsistence: Optimizing diets to minimize footprints. Science of the Total Environment, 2016, 553, 120-127.	8.0	121
43	Sustaining food self-sufficiency of a nation: The case of Sri Lankan rice production and related water and fertilizer demands. Ambio, 2016, 45, 302-312.	5.5	25
44	Structure and evolution of the global seafood trade network. Environmental Research Letters, 2015, 10, 125014.	5.2	151
45	Decadal-Scale Change in a Large-River Ecosystem. BioScience, 2014, 64, 496-510.	4.9	49
46	Freshwater savings from marine protein consumption. Environmental Research Letters, 2014, 9, 014005.	5.2	29
47	Temperate reservoirs are large carbon sinks and small CO ₂ sources: Results from highâ€resolution carbon budgets. Global Biogeochemical Cycles, 2013, 27, 52-64.	4.9	73