Peter Meinke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8788857/publications.pdf

Version: 2024-02-01

34 papers 1,016 citations

16 h-index 454955 30 g-index

40 all docs

40 docs citations

40 times ranked

1491 citing authors

#	Article	IF	CITATIONS
1	Inheritance Pattern of Hereditary Angioedema Indicates Mutation-Dependent Selective Effects During Early Embryonic Development. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1029-1037.	3.8	3
2	BNIP3 Is Involved in Muscle Fiber Atrophy in Late-Onset Pompe Disease Patients. American Journal of Pathology, 2022, , .	3.8	3
3	Type-2 muscle fiber atrophy is associated with sarcopenia in elderly men with hip fracture. Experimental Gerontology, 2021, 144, 111171.	2.8	20
4	Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6 gene mutation. Journal of Allergy and Clinical Immunology, 2021, 148, 1041-1048.	2.9	65
5	Uptake of mossâ€derived human recombinant GAA in Gaa â^'/â^' mice. JIMD Reports, 2021, 59, 81-89.	1.5	3
6	Late-onset neuromuscular disorders in the differential diagnosis of sarcopenia. BMC Neurology, 2021, 21, 241.	1.8	6
7	CTG-Repeat Detection in Primary Human Myoblasts of Myotonic Dystrophy Type 1. Frontiers in Neuroscience, 2021, 15, 686735.	2.8	O
8	Transcriptome Analysis in a Primary Human Muscle Cell Differentiation Model for Myotonic Dystrophy Type 1. International Journal of Molecular Sciences, 2021, 22, 8607.	4.1	9
9	Influence of IGF-I serum concentration on muscular regeneration capacity in patients with sarcopenia. BMC Musculoskeletal Disorders, 2021, 22, 807.	1.9	7
10	A multistage sequencing strategy pinpoints novel candidate alleles for Emery-Dreifuss muscular dystrophy and supports gene misregulation as its pathomechanism. EBioMedicine, 2020, 51, 102587.	6.1	40
11	Moss-Derived Human Recombinant GAA Provides an Optimized Enzyme Uptake in Differentiated Human Muscle Cells of Pompe Disease. International Journal of Molecular Sciences, 2020, 21, 2642.	4.1	21
12	The cell-wide web coordinates cellular processes by directing site-specific Ca2+ flux across cytoplasmic nanocourses. Nature Communications, 2019, 10, 2299.	12.8	14
13	Sarcopenia – Endocrinological and Neurological Aspects. Experimental and Clinical Endocrinology and Diabetes, 2019, 6, 8-22.	1.2	23
14	Telomere elongation through hTERT immortalization leads to chromosome repositioning in control cells and genomic instability in Hutchinsonâ€Gilford progeria syndrome fibroblasts, expressing a novel SUN1 isoform. Genes Chromosomes and Cancer, 2019, 58, 341-356.	2.8	27
15	Assessing metabolic profiles in human myoblasts from patients with late-onset Pompe disease. Annals of Translational Medicine, 2019, 7, 277-277.	1.7	6
16	Nuclear Envelope Transmembrane Proteins in Myotonic Dystrophy Type 1. Frontiers in Physiology, 2018, 9, 1532.	2.8	7
17	Myotonic Dystrophy—A Progeroid Disease?. Frontiers in Neurology, 2018, 9, 601.	2.4	34
18	Immunohistochemistry on a panel of Emery–Dreifuss muscular dystrophy samples reveals nuclear envelope proteins as inconsistent markers for pathology. Neuromuscular Disorders, 2017, 27, 338-351.	0.6	15

#	Article	IF	Citations
19	The increasing relevance of nuclear envelope myopathies. Current Opinion in Neurology, 2016, 29, 651-661.	3.6	19
20	Purification of Lamins and Soluble Fragments of NETs. Methods in Enzymology, 2016, 569, 79-100.	1.0	4
21	Nucleoskeleton dynamics and functions in health and disease. Cell Health and Cytoskeleton, 2015, , 55.	0.7	2
22	Abnormal proliferation and spontaneous differentiation of myoblasts from a symptomatic female carrier of X-linked Emery–Dreifuss muscular dystrophy. Neuromuscular Disorders, 2015, 25, 127-136.	0.6	21
23	LINC'ing form and function at the nuclear envelope. FEBS Letters, 2015, 589, 2514-2521.	2.8	65
24	NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope. PLoS ONE, 2014, 9, e111851.	2.5	23
25	New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. European Journal of Human Genetics, 2014, 22, 1002-1011.	2.8	51
26	Muscular Dystrophy-Associated SUN1 and SUN2 Variants Disrupt Nuclear-Cytoskeletal Connections and Myonuclear Organization. PLoS Genetics, 2014, 10, e1004605.	3 . 5	153
27	Contribution of SUN1 Mutations to the Pathomechanism in Muscular Dystrophies. Human Mutation, 2014, 35, 452-461.	2.5	25
28	Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus, 2013, 4, 460-477.	2.2	77
29	Progeroid laminopathy with restrictive dermopathy-like features caused by an isodisomic LMNA mutation p.R435C. Aging, 2013, 5, 445-459.	3.1	15
30	Progeroide Laminopathien zwischen Hutchinson-Gilford-Syndrom, restriktiver Dermopathie und mandibuloakraler Dysplasie. Medizinische Genetik, 2012, 24, 257-261.	0.2	0
31	LINC complex alterations in DMD and EDMD/CMT fibroblasts. European Journal of Cell Biology, 2012, 91, 614-628.	3.6	49
32	The LINC complex and human disease. Biochemical Society Transactions, 2011, 39, 1693-1697.	3.4	81
33	A novel mutation in the coagulation factor 12 gene in subjects with hereditary angioedema and normal C1-inhibitor. Clinical Immunology, 2011, 141, 31-35.	3.2	119
34	Cockayne syndrome without UV-sensitivity in Vietnamese siblings with novel ERCC8 variants. Aging, 0, , .	3.1	3