Lei Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878549/publications.pdf

Version: 2024-02-01

		304743	243625
51	2,673	22	44
papers	citations	h-index	g-index
57	57	57	4049
all docs	docs citations	times ranked	citing authors
3.2 4000			

#	Article	IF	CITATIONS
1	The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity, 2016, 44, 597-608.	14.3	429
2	MPYS, a Novel Membrane Tetraspanner, Is Associated with Major Histocompatibility Complex Class II and Mediates Transduction of Apoptotic Signals. Molecular and Cellular Biology, 2008, 28, 5014-5026.	2.3	363
3	MPYS Is Required for IFN Response Factor 3 Activation and Type I IFN Production in the Response of Cultured Phagocytes to Bacterial Second Messengers Cyclic-di-AMP and Cyclic-di-GMP. Journal of Immunology, 2011, 187, 2595-2601.	0.8	262
4	Rad50-CARD9 interactions link cytosolic DNA sensing to IL- $1\hat{l}^2$ production. Nature Immunology, 2014, 15, 538-545.	14.5	132
5	Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1122-31.	7.1	115
6	Identification and characterization of a loss-of-function human MPYS variant. Genes and Immunity, 2011, 12, 263-269.	4.1	109
7	Deletion of the cyclic <scp>diâ€AMP</scp> phosphodiesterase gene (<scp><i>cnpB</i></scp>) in <scp><i>M</i></scp> <ii>ycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Molecular Microbiology, 2014, 93, 65-79.</ii>	2.5	99
8	Sialic Acid Binding Domains of CD22 Are Required For Negative Regulation of B Cell Receptor Signaling. Journal of Experimental Medicine, 2002, 195, 1199-1205.	8.5	96
9	TMEM173 variants and potential importance to human biology and disease. Genes and Immunity, 2019, 20, 82-89.	4.1	87
10	Chronic neurodegeneration induces type I interferon synthesis via STING, shaping microglial phenotype and accelerating disease progression. Glia, 2019, 67, 1254-1276.	4.9	80
11	Cyclicâ€diâ€GMP and cyclicâ€diâ€AMP activate the NLRP3 inflammasome. EMBO Reports, 2013, 14, 900-906.	4.5	75
12	The mucosal adjuvant cyclic di-GMP enhances antigen uptake and selectively activates pinocytosis-efficient cells in vivo. ELife, 2015, 4, .	6.0	75
13	MPYS/STING-Mediated TNF-α, Not Type I IFN, Is Essential for the Mucosal Adjuvant Activity of (3′–5′)-Cyclic-Di-Guanosine-Monophosphate In Vivo. Journal of Immunology, 2014, 192, 492-502.	0.8	74
14	The Common R71H-G230A-R293Q Human <i>TMEM173</i> Is a Null Allele. Journal of Immunology, 2017, 198, 776-787.	0.8	62
15	Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nature Communications, 2019, 10, 701.	12.8	57
16	STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses. Cell Metabolism, 2022, 34, 125-139.e8.	16.2	49
17	The Age of Cyclic Dinucleotide Vaccine Adjuvants. Vaccines, 2020, 8, 453.	4.4	47
18	STING/MPYS Mediates Host Defense against <i>Listeria monocytogenes</i> Infection by Regulating Ly6Chi Monocyte Migration. Journal of Immunology, 2013, 190, 2835-2843.	0.8	45

#	Article	IF	CITATIONS
19	The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires' disease in humans. PLoS Pathogens, 2018, 14, e1006829.	4.7	43
20	Growing tumors induce a local STING dependent Type I IFN response in dendritic cells. International Journal of Cancer, 2016, 139, 1350-1357.	5.1	41
21	Cellular Reactive Oxygen Species Inhibit MPYS Induction of IFNβ. PLoS ONE, 2010, 5, e15142.	2.5	39
22	Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules. F1000Research, 2016, 5, 368.	1.6	30
23	B cell MHC class II signaling: A story of life and death. Human Immunology, 2019, 80, 37-43.	2.4	25
24	Immature lung TNFR2â^' conventional DC 2 subpopulation activates moDCs to promote cyclic di-GMP mucosal adjuvant responses in vivo. Mucosal Immunology, 2019, 12, 277-289.	6.0	24
25	MHC class II structural requirements for the association with $\lg\hat{l}\pm/\hat{l}^2$, and signaling of calcium mobilization and cell death. Immunology Letters, 2008, 116, 184-194.	2.5	20
26	Lung IFNAR1hi TNFR2+ cDC2 promotes lung regulatory T cells induction and maintains lung mucosal tolerance at steady state. Mucosal Immunology, 2020, 13, 595-608.	6.0	20
27	Chitin-derived polymer deacetylation regulates mitochondrial reactive oxygen species dependent cGAS-STING and NLRP3 inflammasome activation. Biomaterials, 2021, 275, 120961.	11.4	20
28	The cGAS/STING Pathway Detects Streptococcus pneumoniae but Appears Dispensable for Antipneumococcal Defense in Mice and Humans. Infection and Immunity, 2018, 86, .	2.2	18
29	Monocyte-derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunology, 2021, 14, 431-442.	6.0	18
30	VISA Is Required for B Cell Expression of TLR7. Journal of Immunology, 2012, 188, 248-258.	0.8	17
31	STING differentially regulates experimental GVHD mediated by CD8 versus CD4 T cell subsets. Science Translational Medicine, 2020, 12, .	12.4	15
32	Activated plasmacytoid dendritic cells act synergistically with hepatitis B core antigen-pulsed monocyte-derived dendritic cells in the induction of hepatitis B virus-specific CD8 T-cell response. Clinical Immunology, 2008, 129, 295-303.	3.2	14
33	Response to Comment on "The Common R71H-G230A-R293Q Human <i>TMEM173</i> Is a Null Allele― Journal of Immunology, 2017, 198, 4185-4188.	0.8	10
34	Efficient Induction of Cytotoxic T Cells by Viral Vector Vaccination Requires STING-Dependent DC Functions. Frontiers in Immunology, 2020, 11, 1458.	4.8	9
35	Obesity and STING1 genotype associate with 23-valent pneumococcal vaccination efficacy. JCI Insight, 2020, 5, .	5.0	9
36	In vivo reprogramming of pathogenic lung TNFR2 <code>⁺ cDC2s</code> by IFNβ inhibits HDM-induced asthma. Science Immunology, 2021, 6, .	11.9	7

#	Article	IF	CITATIONS
37	SMIP-016 in Action: CD37 as a Death Receptor. Cancer Cell, 2012, 21, 597-598.	16.8	6
38	Monocyte-Derived Dendritic Cells (moDCs) Differentiate into Bcl6+ Mature moDCs to Promote Cyclic di-GMP Vaccine Adjuvant–Induced Memory TH Cells in the Lung. Journal of Immunology, 2021, 206, 2233-2245.	0.8	5
39	New MoDC-Targeting TNF Fusion Proteins Enhance Cyclic Di-GMP Vaccine Adjuvanticity in Middle-Aged and Aged Mice. Frontiers in Immunology, 2020, 11, 1674.	4.8	4
40	cGAS–STING and MyD88 Pathways Synergize in Ly6Chi Monocyte to Promote Streptococcus pneumoniae-Induced Late-Stage Lung IFNγ Production. Frontiers in Immunology, 2021, 12, 699702.	4.8	4
41	The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulmonary Circulation, 2021, 11, 1-16.	1.7	3
42	STING and transplantation: can targeting this pathway improve outcomes?. Blood, 2021, 137, 1871-1878.	1.4	2
43	Evaluation of Mucosal and Systemic Vaccine Responses by Cyclic di-GMP (CDG)-Adjuvanted Protein Subunit Vaccines. Bio-protocol, 2019, 9, e3217.	0.4	2
44	The Innate Immune Sensor Sting Promotes CD8+ T Cell-Mediated Gvhd after Preclinical Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, S49.	2.0	0
45	The Innate Immune Sensor Sting Promotes Donor CD8+ T Cell Activation and Recipient APC Death Early after Preclinical Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2020, 26, S29.	2.0	0
46	Interferon-beta (IFNb) Reprograms Pathogenic Lung Dendritic Cells in Human Chronic Lung Allograft Dysfunction (CLAD). Journal of Heart and Lung Transplantation, 2021, 40, S58.	0.6	0
47	HAQ and AQ-MPYS Modulate Fatty Acid Metabolism and Immune Tolerance at Homoeostasis. SSRN Electronic Journal, 0, , .	0.4	0
48	The Innate Immune Sensor Sting Regulates Intestinal Inflammation and GVHD after Allogeneic Hematopoietic Stem Cell Transplantation in Knock-out and Human Allele Knock-in Recipient Mice. Blood, 2018, 132, 65-65.	1.4	0
49	Ifn \hat{l}^2 Reprograms Th2 Promoting Mature Lung TNFR2+ cDC2 Subset <i>in vivo</i> to Generate Regulatory T Cells and Restore Lung Mucosal Tolerance. SSRN Electronic Journal, 0, , .	0.4	0
50	The Innate Immune Sensor Sting Promotes Donor CD8+ T Cell Activation and Recipient APC Death Early after Preclinical Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2019, 134, 3202-3202.	1.4	0
51	Unraveling Molecular and Metabolic Gutâ€Brain Signalling Disruptions and Potential Therapy in New Bardetâ€Biedl Syndrome Mouse. FASEB Journal, 2022, 36, .	0.5	0