
Eric A Gaucher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/878534/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature, 2008, 451, 704-707.	27.8	338
2	Resurrecting ancestral alcohol dehydrogenases from yeast. Nature Genetics, 2005, 37, 630-635.	21.4	290
3	Evolutionary history and metabolic insights of ancient mammalian uricases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3763-3768.	7.1	238
4	Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature, 2003, 425, 285-288.	27.8	227
5	Hyperstability and Substrate Promiscuity in Laboratory Resurrections of Precambrian β-Lactamases. Journal of the American Chemical Society, 2013, 135, 2899-2902.	13.7	212
6	Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nature Structural and Molecular Biology, 2011, 18, 592-596.	8.2	182
7	Uric acidâ€dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB Journal, 2014, 28, 3339-3350.	0.5	145
8	Predicting functional divergence in protein evolution by site-specific rate shifts. Trends in Biochemical Sciences, 2002, 27, 315-321.	7.5	141
9	Conservation of Protein Structure over Four Billion Years. Structure, 2013, 21, 1690-1697.	3.3	115
10	Planetary Biology–Paleontological, Geological, and Molecular Histories of Life. Science, 2002, 296, 864-868.	12.6	105
11	Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins: Structure, Function and Bioinformatics, 2013, 81, 715-721.	2.6	98
12	The Diverse Biological Functions of Phosphatidylinositol Transfer Proteins in Eukaryotes. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41, 21-49.	5.2	93
13	Uric Acid: A Danger Signal From the RNA World That May Have a Role in the Epidemic of Obesity, Metabolic Syndrome, and Cardiorenal Disease: Evolutionary Considerations. Seminars in Nephrology, 2011, 31, 394-399.	1.6	93
14	Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Nature Structural and Molecular Biology, 2009, 16, 890-896.	8.2	91
15	Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nature Biotechnology, 2017, 35, 35-37.	17.5	87
16	Secondary structure and domain architecture of the 23S and 5S rRNAs. Nucleic Acids Research, 2013, 41, 7522-7535.	14.5	78
17	Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1948-1953.	7.1	71
18	Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History. Molecular Biology and Evolution, 2015, 32, 440-455.	8.9	71

Eric A Gaucher

#	Article	IF	CITATIONS
19	A call for likelihood phylogenetics even when the process of sequence evolution is heterogeneous. Molecular Phylogenetics and Evolution, 2005, 37, 928-931.	2.7	68
20	The planetary biology of ascorbate and uric acid and their relationship with the epidemic of obesity and cardiovascular disease. Medical Hypotheses, 2008, 71, 22-31.	1.5	67
21	An experimental phylogeny to benchmark ancestral sequence reconstruction. Nature Communications, 2016, 7, 12847.	12.8	62
22	The Molecular Evolution of the p120-Catenin Subfamily and Its Functional Associations. PLoS ONE, 2010, 5, e15747.	2.5	61
23	Coevolution of URAT1 and Uricase during Primate Evolution: Implications for Serum Urate Homeostasis and Gout. Molecular Biology and Evolution, 2016, 33, 2193-2200.	8.9	60
24	De novo active sites for resurrected Precambrian enzymes. Nature Communications, 2017, 8, 16113.	12.8	60
25	Directed Evolution of Polymerases To Accept Nucleotides with Nonstandard Hydrogen Bond Patterns. Biochemistry, 2013, 52, 5288-5294.	2.5	56
26	Phenotypic comparisons of consensus variants versus laboratory resurrections of Precambrian proteins. Proteins: Structure, Function and Bioinformatics, 2014, 82, 887-896.	2.6	56
27	On the Origin of Isoprenoid Biosynthesis. Molecular Biology and Evolution, 2018, 35, 2185-2197.	8.9	54
28	Deep PhylogenyHow a Tree Can Help Characterize Early Life on Earth. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002238-a002238.	5.5	53
29	Utilizing natural diversity to evolve protein function: applications towards thermostability. Current Opinion in Chemical Biology, 2011, 15, 399-406.	6.1	52
30	Exploiting Models of Molecular Evolution to Efficiently Direct Protein Engineering. Journal of Molecular Evolution, 2011, 72, 193-203.	1.8	47
31	Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components. Nucleic Acids Research, 2012, 40, 7932-7945.	14.5	45
32	RNA–Magnesium–Protein Interactions in Large Ribosomal Subunit. Journal of Physical Chemistry B, 2012, 116, 8113-8120.	2.6	42
33	Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein. Journal of Molecular Evolution, 2017, 84, 69-84.	1.8	40
34	Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
35	Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins. Glycobiology, 2002, 12, 17R-27R.	2.5	35
36	Evolutionary, Structural and Biochemical Evidence for a New Interaction Site of the Leptin Obesity Protein. Genetics, 2003, 163, 1549-1553.	2.9	32

Eric A Gaucher

#	Article	IF	CITATIONS
37	The Crystal Structure of eEF1A Refines the Functional Predictions of an Evolutionary Analysis of Rate Changes Among Elongation Factors. Molecular Biology and Evolution, 2002, 19, 569-573.	8.9	27
38	Ancestral Sequence Reconstruction: From Chemical Paleogenetics to Maximum Likelihood Algorithms and Beyond. Journal of Molecular Evolution, 2021, 89, 157-164.	1.8	25
39	Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase. Nature Communications, 2021, 12, 380.	12.8	20
40	Non-conservation of folding rates in the thioredoxin family reveals degradation of ancestral unassisted-folding. Biochemical Journal, 2019, 476, 3631-3647.	3.7	16
41	Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life. PLoS ONE, 2016, 11, e0156657.	2.5	16
42	Ancestral sequence reconstruction as a tool to understand natural history and guide synthetic biology: realizing and extending the vision of Zuckerkandl and Pauling. , 2007, , 20-33.		11
43	Phylogenetic Articulation of Uric Acid Evolution in Mammals and How It Informs a Therapeutic Uricase. Molecular Biology and Evolution, 2022, 39, .	8.9	11
44	Incorporation of Modified Amino Acids by Engineered Elongation Factors with Expanded Substrate Capabilities. ACS Synthetic Biology, 2019, 8, 287-296.	3.8	10
45	Stabilization of Near-Infrared Fluorescent Proteins by Packaging in Virus-like Particles. Biomacromolecules, 2020, 21, 2432-2439.	5.4	10
46	Interchanging Functionality Among Homologous Elongation Factors Using Signatures of Heterotachy. Journal of Molecular Evolution, 2013, 76, 4-12.	1.8	9
47	Brief report: The uricase mutation in humans increases our risk for cancer growth. Cancer & Metabolism, 2021, 9, 32.	5.0	9
48	Identification of coagulation factor IX variants with enhanced activity through ancestral sequence reconstruction. Blood Advances, 2021, 5, 3333-3343.	5.2	6
49	Combining Ancestral Reconstruction with Folding-Landscape Simulations to Engineer Heterologous Protein Expression. Journal of Molecular Biology, 2021, 433, 167321.	4.2	5
50	Molecular coevolution of coagulation factor VIII and von Willebrand factor. Blood Advances, 2021, 5, 812-822.	5.2	4
51	Molecular Evolution Directs Protein Translation Using Unnatural Amino Acids. Current Protocols in Chemical Biology, 2015, 7, 223-228.	1.7	2
52	Bioengineering Coagulation Factor VIII through Ancestral Protein Reconstruction. Blood, 2015, 126, 123-123.	1.4	2
53	CRISPR-Cas9-mediated reactivation of the uricase pseudogene in human cells prevents acute hyperuricemia. Molecular Therapy - Nucleic Acids, 2021, 25, 578-584.	5.1	1