
Xina Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8784619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co ₂ N _{0.67} /MoO ₂ Heterostructure as High-Efficiency Electrocatalysts for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 440-448.	5.1	15
2	Loading density modulation of Zn0.5Cd0.5S nanoparticles on ZnS(en)0.5 nanosheets with effective hole transfer channels towards highly efficient hydrogen evolution. Applied Surface Science, 2022, 598, 153757.	6.1	4
3	Strategic Surface Modification for the Enhanced Photocatalyic Activity: Synergistic Promotion for Energy Utilization in TiO2–Cu2O–Au. Catalysis Letters, 2021, 151, 1693-1699.	2.6	6
4	<scp>CdS</scp> nanoflakes decorated by Ni(<scp>OH</scp>) ₂ nanoparticles for enhanced photocatalytic hydrogen production. International Journal of Energy Research, 2021, 45, 14985-14994.	4.5	11
5	Investigation of phonon modes in 2H-TaX2 (X = S/Se) flakes with electrostatic doping. Journal of Applied Physics, 2021, 130, 105302.	2.5	1
6	Combined Experimental and Theoretical Assessment of WX _{<i>y</i>} (X = C, N, S, P) for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1082-1088.	5.1	32
7	Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production. Journal of Materials Chemistry A, 2020, 8, 23202-23230.	10.3	81
8	Mo incorporated Ni nanosheet as high-efficiency co-catalyst for enhancing the photocatalytic hydrogen production of g-C3N4. International Journal of Hydrogen Energy, 2020, 45, 18912-18921.	7.1	25
9	Enhancement of the Photoelectrocatalytic H ₂ Evolution on a Rutile-TiO ₂ (001) Surface Decorated with Dendritic MoS ₂ Monolayer Nanoflakes. ACS Applied Energy Materials, 2020, 3, 5756-5764.	5.1	17
10	Strategic modulation of energy transfer in Au-TiO ₂ -Pt nanodumbbells: plasmon-enhanced hydrogen evolution reaction. Nanoscale, 2020, 12, 7035-7044.	5.6	25
11	Construction of Zn0.5Cd0.5S nanosheets and the hybridization with onion-like carbon for enhanced photocatalytic hydrogen production. Applied Surface Science, 2020, 525, 146586.	6.1	16
12	Enhancement of Visibleâ€Light Photocatalytic Hydrogen Production by CeCO ₃ OH in gâ€C ₃ N ₄ /CeO ₂ System. ChemCatChem, 2019, 11, 1069-1075.	3.7	24
13	Vapor-Phase Incommensurate Heteroepitaxy of Oriented Single-Crystal CsPbBr ₃ on GaN: Toward Integrated Optoelectronic Applications. ACS Nano, 2019, 13, 10085-10094.	14.6	59
14	Multifunctional MoS ₂ ultrathin nanoflakes loaded by Cd _{0.5} Zn _{0.5} S QDs for enhanced photocatalytic H ₂ production. International Journal of Energy Research, 2019, 43, 5678-5686.	4.5	25
15	Ultrafine WC _{1–<i>x</i>} Nanocrystals: An Efficient Cocatalyst for the Significant Enhancement of Photocatalytic Hydrogen Evolution on g-C ₃ N ₄ . Journal of Physical Chemistry C, 2019, 123, 26136-26144.	3.1	33
16	Enhanced photoelectrochemical performance with plasmon-induced hot electron injection of gold nanoparticle. Journal Physics D: Applied Physics, 2019, 52, 125503.	2.8	4
17	Colloidal Cd _x Zn _{1â^x} S nanocrystals as efficient photocatalysts for H ₂ production under visible-light irradiation. RSC Advances, 2019, 9, 4001-4007.	3.6	14
18	Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence. Applied Physics Letters, 2019, 114, .	3.3	15

XINA WANG

#	Article	IF	CITATIONS
19	Boosting the electrocatalytic activity of amorphous molybdenum sulfide nanoflakes <i>via</i> nickel sulfide decoration. Nanoscale, 2019, 11, 22971-22979.	5.6	19
20	Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode?. Journal of Chemical Physics, 2019, 151, 211101.	3.0	12
21	One-Pot Synthesis of Co-Doped VSe ₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 644-653.	5.1	59
22	Networkâ€Like Ni _{1â^'x} Mo _x Nanosheets: Multiâ€Functional Electrodes for Overall Water Splitting and Supercapacitor. ChemElectroChem, 2019, 6, 1338-1343.	3.4	16
23	MoFeâ€Codoped Ni ₃ S ₂ /Ni(OH) ₂ Nanosheets with Large Sample Size toward Highâ€Performance Oxygen Evolution. Energy Technology, 2019, 7, 1801053.	3.8	5
24	N and V Coincorporated Ni Nanosheets for Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 16525-16531.	6.7	25
25	Enhanced Photocatalytic Hydrogen Evolution by Loading Cd0.5Zn0.5S QDs onto Ni2P Porous Nanosheets. Nanoscale Research Letters, 2018, 13, 31.	5.7	30
26	Strategic modulation of electron migration in the TiO2-Au-CdS: Z-scheme design for the enhancement in hydrogen evolution reaction. Electrochemistry Communications, 2018, 95, 28-32.	4.7	17
27	Ultrathin CsPbX ₃ Nanowire Arrays with Strong Emission Anisotropy. Advanced Materials, 2018, 30, e1801805.	21.0	135
28	Composition dependent activity of Fe 1â^'x Pt x decorated ZnCdS nanocrystals for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 20888-20894.	7.1	28
29	ZnO/CdS nanorod arrays decorated by layered double hydroxides for efficient solar water oxidation. International Journal of Energy Research, 2017, 41, 1781-1789.	4.5	10
30	Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity. Nanoscale Research Letters, 2017, 12, 302.	5.7	6
31	Loading Cd _{0.5} Zn _{0.5} S Quantum Dots onto Onion-Like Carbon Nanoparticles to Boost Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2017, 9, 22560-22567.	8.0	49
32	Performance improvement of dual processed perovskite solar cell-acid-modified ZnO nanorods with Cl-doped light harvesting layer. International Journal of Energy Research, 2017, 41, 1847-1854.	4.5	9
33	Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.	12.8	191
34	Bifunctional Ni1â^'xFex layered double hydroxides/Ni foam electrodes for high-efficient overall water splitting: A study on compositional tuning and valence state evolution. International Journal of Hydrogen Energy, 2017, 42, 5560-5568.	7.1	55
35	Cobalt-Phosphate modified TiO2/BiVO4 nanoarrays photoanode for efficient water splitting. International Journal of Hydrogen Energy, 2017, 42, 5496-5504.	7.1	67
36	CoPt <i>_x</i> -loaded Zn _{0.5} Cd _{0.5} S nanocomposites for enhanced visible light photocatalytic H ₂ production. International Journal of Energy Research, 2016, 40, 1280-1286.	4.5	32

XINA WANG

#	Article	IF	CITATIONS
37	Structural and photocatalytic properties of Cd1-xZnxS nanocrystals via organic solution method. Functional Materials Letters, 2016, 09, 1750009.	1.2	3
38	Surface Roughening of Nickel Cobalt Phosphide Nanowire Arrays/Ni Foam for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces, 2016, 8, 34270-34279.	8.0	116
39	Preparation and Photovoltaic Properties of Dye Sensitized Solar Cells Using ZnO Nanorods Stacking Films on AZO Substrate as Photoanode. Journal of Nanoscience and Nanotechnology, 2016, 16, 3622-3627.	0.9	1
40	Temperatureâ€Mediated Selective Growth of MoS ₂ /WS ₂ and WS ₂ /MoS ₂ Vertical Stacks on Au Foils for Direct Photocatalytic Applications. Advanced Materials, 2016, 28, 10664-10672.	21.0	188
41	Strategic Surface Modification of TiO2 nanorods by WO3 and TiCl4 for the Enhancement in Oxygen Evolution Reaction. Electrochimica Acta, 2016, 222, 1112-1119.	5.2	7
42	Compositional effects and optical properties of CdSe _X Te _{1â^'X} alloyed nanotube arrays. CrystEngComm, 2015, 17, 960-966.	2.6	13
43	Transfer and assembly of large area TiO 2 nanotube arrays onto conductive glass for dye sensitized solar cells. Journal of Power Sources, 2014, 247, 807-812.	7.8	59
44	Vertically aligned CdTe nanotube arrays on indium tin oxide for visible-light-driven photoelectrocatalysis. Applied Catalysis B: Environmental, 2014, 147, 17-21.	20.2	20
45	Dual Roles of ZnS Thin Layers in Significant Photocurrent Enhancement of ZnO/CdTe Nanocable Arrays Photoanode. ACS Applied Materials & Interfaces, 2013, 5, 3312-3316.	8.0	31
46	Double-shelled ZnO/CdSe/CdTe nanocable arrays for photovoltaic applications: microstructure evolution and interfacial energy alignment. Journal of Materials Chemistry, 2012, 22, 12532.	6.7	47
47	Structural, Magnetic Properties, and Hall Carrier Concentrations of (<scp><scp>Co</scp></scp> , <scp>Cu</scp> , <scp>Cu</scp>): <scp>ZnO</scp> Thin Films–The Role of <scp><cscp>Cu</cscp></scp> lons and Annealing in Hydrogen. Journal of the American Ceramic Society. 2012, 95, 2266-2271.	3.8	4
48	Crystalline Te nanotube and Te nanorods-on-CdTe nanotube arrays on ITO via a ZnO nanorod templating-reaction. CrystEngComm, 2011, 13, 2955.	2.6	19
49	Aligned ZnO/CdTe Coreâ^'Shell Nanocable Arrays on Indium Tin Oxide: Synthesis and Photoelectrochemical Properties. ACS Nano, 2010, 4, 3302-3308.	14.6	280
50	CdSe Nanotube Arrays on ITO via Aligned ZnO Nanorods Templating. Chemistry of Materials, 2010, 22, 64-69.	6.7	45
51	CdTe Nanorod Arrays on ITO: From Microstructure to Photoelectrical Property. Journal of Physical Chemistry C, 2009, 113, 16951-16953.	3.1	45