Hans Keppler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8783900/publications.pdf

Version: 2024-02-01

61984 106344 6,876 65 43 65 citations h-index g-index papers 68 68 68 4275 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Electrical Conductivity of KClâ€H ₂ O Fluids in the Crust and Lithospheric Mantle. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	3
2	A systematic assessment of the diamond trap method for measuring fluid compositions in high-pressure experiments. American Mineralogist, 2021, 106, 28-37.	1.9	3
3	Electrical Conductivity in Texturally Equilibrated Fluidâ€Bearing Forsterite Aggregates at 800°C and 1ÂGPa: Implications for the High Electrical Conductivity Anomalies in Mantle Wedges. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021343.	3.4	13
4	The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contributions To Mineralogy and Petrology, 2021 , 176 , 1 .	3.1	32
5	Trace element fractionation between biotite, allanite, and granitic melt. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	12
6	Electrical conductivity of HCl-bearing aqueous fluids to 700°C and 1ÂGPa. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	6
7	Electrical Conductivity of NaClâ€Bearing Aqueous Fluids to 900°C and 5ÂGPa. Journal of Geophysical Research: Solid Earth, 2019, 124, 1397-1411.	3.4	48
8	Carbon solubility in silicate melts in equilibrium with a CO-CO2 gas phase and graphite. Geochimica Et Cosmochimica Acta, 2019, 259, 129-143.	3.9	22
9	Nitrogen solubility in the deep mantle and the origin of Earth's primordial nitrogen budget. Earth and Planetary Science Letters, 2018, 488, 134-143.	4.4	41
10	The partitioning of sulfur between multicomponent aqueous fluids and felsic melts. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	16
11	The Relative Raman Scattering Cross Sections of H ₂ O and D ₂ O, with Implications for In Situ Studies of Isotope Fractionation. ACS Earth and Space Chemistry, 2018, 2, 925-934.	2.7	17
12	Electrical conductivity of NaCl-bearing aqueous fluids to 600°C and 1ÂGPa. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	72
13	Fluids and trace element transport in subduction zones. American Mineralogist, 2017, 102, 5-20.	1.9	66
14	Comment on "Experimentally-determined carbon isotope fractionation in and between methane-bearing melt and fluid to upper mantle temperatures and pressures―by Mysen. Earth and Planetary Science Letters, 2017, 479, 387-388.	4.4	2
15	The adsorption of HCl on volcanic ash. Earth and Planetary Science Letters, 2016, 438, 66-74.	4.4	8
16	Fluid-melt partitioning of sulfur in differentiated arc magmas and the sulfur yield of explosive volcanic eruptions. Geochimica Et Cosmochimica Acta, 2016, 176, 26-43.	3.9	39
17	Nitrogen isotope fractionation during terrestrial core-mantle separation. Geochemical Perspectives Letters, 2016, , 138-147.	5.0	49
18	Anhydrite stability and the effect of Ca on the behavior of sulfur in felsic magmas. American Mineralogist, 2015, 100, 257-266.	1.9	16

#	Article	IF	Citations
19	Monazite and xenotime solubility in granitic melts and the origin of the lanthanide tetrad effect. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	63
20	The speciation of carbon monoxide in silicate melts and glasses. American Mineralogist, 2015, 100, 1641-1644.	1.9	23
21	Anhydrite solubility in differentiated arc magmas. Geochimica Et Cosmochimica Acta, 2015, 158, 79-102.	3.9	35
22	Nitrogen distribution between aqueous fluids and silicate melts. Earth and Planetary Science Letters, 2015, 411, 218-228.	4.4	48
23	Adsorption of sulfur dioxide on volcanic ashes. American Mineralogist, 2014, 99, 1085-1094.	1.9	17
24	Electrical conductivity measurements of aqueous fluids under pressure with a hydrothermal diamond anvil cell. Review of Scientific Instruments, 2014, 85, 115107.	1.3	15
25	The speciation of carbon dioxide in silicate melts. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	33
26	Nitrogen speciation in mantle and crustal fluids. Geochimica Et Cosmochimica Acta, 2014, 129, 13-32.	3.9	97
27	Nitrogen solubility in upper mantle minerals. Earth and Planetary Science Letters, 2013, 377-378, 311-323.	4.4	95
28	Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones. Contributions To Mineralogy and Petrology, 2013, 165, 117-128.	3.1	62
29	Carbon in Silicate Melts. Reviews in Mineralogy and Geochemistry, 2013, 75, 251-287.	4.8	102
30	Zircon solubility in aqueous fluids at high temperatures and pressures. Geochimica Et Cosmochimica Acta, 2013, 119, 178-187.	3.9	56
31	In-situ Raman spectroscopic study of sulfur speciation in oxidized magmatic-hydrothermal fluids. American Mineralogist, 2012, 97, 1348-1353.	1.9	20
32	The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth and Planetary Science Letters, 2012, 351-352, 195-207.	4.4	115
33	Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica Et Cosmochimica Acta, 2011, 75, 1673-1692.	3.9	143
34	The oxidation state of sulfur in magmatic fluids. Earth and Planetary Science Letters, 2011, 301, 190-198.	4.4	39
35	The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contributions To Mineralogy and Petrology, 2011, 161, 597-613.	3.1	76
36	Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures. Contributions To Mineralogy and Petrology, 2011, 162, 501-513.	3.1	44

#	Article	IF	Citations
37	Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contributions To Mineralogy and Petrology, 2011, 162, 637-650.	3.1	173
38	The distribution of sulfur between haplogranitic melts and aqueous fluids. Geochimica Et Cosmochimica Acta, 2010, 74, 645-660.	3.9	68
39	Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. American Mineralogist, 2009, 94, 1175-1186.	1.9	86
40	The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters, 2008, 267, 290-300.	4.4	133
41	Optical Absorption and Radiative Thermal Conductivity of Silicate Perovskite to 125 Gigapascals. Science, 2008, 322, 1529-1532.	12.6	105
42	Solubility of tin in (Cl, F)-bearing aqueous fluids at $700 \hat{A}^{\circ}$ C, $140 MPa$: A LA-ICP-MS study on synthetic fluid inclusions. Geochimica Et Cosmochimica Acta, 2007, 71, 3323-3335.	3.9	81
43	Optical absorption spectra of ferropericlase to 84 GPa. American Mineralogist, 2007, 92, 433-436.	1.9	68
44	Carbon solubility in mantle minerals. Earth and Planetary Science Letters, 2006, 245, 730-742.	4.4	160
45	Optical and near infrared spectra of ringwoodite to 21.5 GPa: Implications for radiative heat transport in the mantle. American Mineralogist, 2005, 90, 1209-1212.	1.9	37
46	Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth and Planetary Science Letters, 2005, 232, 393-402.	4.4	140
47	Viscosity of Fluids in Subduction Zones. Science, 2004, 303, 513-516.	12.6	113
48	Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle. Nature, 2003, 424, 414-416.	27.8	173
49	Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures. Earth and Planetary Science Letters, 2002, 195, 277-290.	4.4	55
50	Water solubility in nominally anhydrous minerals measured by FTIR and 1 H MAS NMR: the effect of sample preparation. Physics and Chemistry of Minerals, 2000, 27, 371-376.	0.8	58
51	Experimental Evidence for the Source of Excess Sulfur in Explosive Volcanic Eruptions. Science, 1999, 284, 1652-1654.	12.6	102
52	The speciation of Ni and Co in silicate melts from optical absorption spectra to 1500°C. Chemical Geology, 1999, 158, 105-115.	3.3	51
53	Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth and Planetary Science Letters, 1999, 165, 187-196.	4.4	325
54	Direct observation of complete miscibility in the albite–H2O system. Nature, 1997, 385, 710-712.	27.8	201

#	Article	IF	CITATIONS
55	Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust. Contributions To Mineralogy and Petrology, 1997, 128, 213-227.	3.1	324
56	Solubility of water in the \hat{l}_{\pm} , \hat{l}^2 and \hat{l}^3 phases of (Mg,Fe) 2 SiO 4. Contributions To Mineralogy and Petrology, 1996, 123, 345-357.	3.1	861
57	Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 1996, 380, 237-240.	27.8	683
58	Infrared spectroscopy of hydrous silicate melts to 1000 degrees C and 10 kbar; direct observation of H ₂ O speciation in a diamond-anvil cell. American Mineralogist, 1995, 80, 1335-1338.	1.9	158
59	Compositional re-equilibration of fluid inclusions in quartz. Contributions To Mineralogy and Petrology, 1995, 119, 1-15.	3.1	59
60	Distribution of chloride between aqueous fluids and felsic melts at 2 kbar and 800°C. European Journal of Mineralogy, 1994, 6, 913-924.	1.3	52
61	Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions To Mineralogy and Petrology, 1993, 114, 479-488.	3.1	310
62	Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study. Geochimica Et Cosmochimica Acta, 1992, 56, 701-707.	3.9	144
63	Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O?HCl and haplogranite-H2O?HF. Contributions To Mineralogy and Petrology, 1991, 109, 139-150.	3.1	360
64	Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature, 1990, 348, 531-533.	27.8	200
65	The influence of the fluid phase composition on the solidus temperatures in the haplogranite system NaAlSi3O8-KAlSi3O8-SiO2-H2O-CO2. Contributions To Mineralogy and Petrology, 1989, 102, 321-327.	3.1	45