List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8783595/publications.pdf Version: 2024-02-01

		26630	33894
242	11,135	56	99
papers	citations	h-index	g-index
245 all docs	245 docs citations	245 times ranked	5814 citing authors

#	Article	IF	CITATIONS
1	Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 2009, 5, 805-810.	16.7	795
2	All-optical polariton transistor. Nature Communications, 2013, 4, 1778.	12.8	409
3	Measurement of Cavity-Polariton Dispersion Curve from Angle-Resolved Photoluminescence Experiments. Physical Review Letters, 1994, 73, 2043-2046.	7.8	399
4	Polariton Superfluids Reveal Quantum Hydrodynamic Solitons. Science, 2011, 332, 1167-1170.	12.6	379
5	Exciton–polariton spin switches. Nature Photonics, 2010, 4, 361-366.	31.4	337
6	Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Optics Letters, 2009, 34, 1477.	3.3	284
7	Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system. Physical Review A, 1996, 53, 2711-2715.	2.5	269
8	Optical investigation of highly strained InGaAsâ€GaAs multiple quantum wells. Journal of Applied Physics, 1987, 62, 3366-3373.	2.5	250
9	Optical and confinement properties of two-dimensional photonic crystals. Journal of Lightwave Technology, 1999, 17, 2063-2077.	4.6	210
10	Room-temperature cavity polaritons in a semiconductor microcavity. Physical Review B, 1994, 49, 16761-16764.	3.2	201
11	Quantitative Measurement of Transmission, Reflection, and Diffraction of Two-Dimensional Photonic Band Gap Structures at Near-Infrared Wavelengths. Physical Review Letters, 1997, 79, 4147-4150.	7.8	196
12	Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons. Physical Review B, 1995, 52, 7810-7813.	3.2	193
13	Refractive index sensing with an air-slot photonic crystal nanocavity. Optics Letters, 2010, 35, 2523.	3.3	186
14	Low-loss channel waveguides with two-dimensional photonic crystal boundaries. Applied Physics Letters, 2000, 77, 2813-2815.	3.3	176
15	Miniband transmission in a photonic crystal coupled-resonator optical waveguide. Optics Letters, 2001, 26, 1019.	3.3	167
16	Self-collimating photonic crystal polarization beam splitter. Optics Letters, 2007, 32, 530.	3.3	151
17	Coupled semiconductor microcavities. Applied Physics Letters, 1994, 65, 2093-2095.	3.3	143
18	All-optical control of the quantum flow of a polariton condensate. Nature Photonics, 2011, 5, 610-614.	31.4	143

#	Article	IF	CITATIONS
19	Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal. Physical Review B, 2001, 63, .	3.2	142
20	Effect ofinsituandexsituannealing on dislocations in GaAs on Si substrates. Applied Physics Letters, 1987, 50, 992-994.	3.3	123
21	Terahertz photonic crystal quantum cascade lasers. Optics Express, 2007, 15, 16818.	3.4	119
22	Observation of Backaction and Self-Induced Trapping in a Planar Hollow Photonic Crystal Cavity. Physical Review Letters, 2013, 110, 123601.	7.8	118
23	Nonlinear Emission of Semiconductor Microcavities in the Strong Coupling Regime. Physical Review Letters, 2000, 85, 2793-2796.	7.8	114
24	Influence of Structural Disorder and Light Coupling on the Excitonic Response of Semiconductor Microcavities. Physical Review Letters, 1998, 80, 4795-4798.	7.8	113
25	Cavity-polariton photoluminescence in semiconductor microcavities: Experimental evidence. Physical Review B, 1996, 53, 10995-11007.	3.2	111
26	Coupled-mode theory and propagation losses in photonic crystal waveguides. Optics Express, 2003, 11, 1490.	3.4	106
27	Ultrahigh finesse microcavity with distributed Bragg reflectors. Applied Physics Letters, 1994, 65, 1883-1885.	3.3	104
28	Dual-wavelength laser emission from a coupled semiconductor microcavity. Applied Physics Letters, 1997, 71, 864-866.	3.3	103
29	Island formation in ultraâ€ŧhin InAs/InP quantum wells grown by chemical beam epitaxy. Applied Physics Letters, 1991, 59, 3018-3020.	3.3	98
30	Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots. Physical Review B, 1999, 59, 1649-1652.	3.2	97
31	Coupled guide and cavity in a two-dimensional photonic crystal. Applied Physics Letters, 2001, 78, 1487-1489.	3.3	96
32	From Fermi's Golden Rule to the Vacuum Rabi Splitting: Magnetopolaritons in a Semiconductor Optical Microcavity. Physical Review Letters, 1995, 74, 3967-3970.	7.8	95
33	Overview of fundamentals and applications of electrons, excitons and photons in confined structures. Journal of Luminescence, 2000, 85, 271-293.	3.1	95
34	Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications. Journal of Applied Physics, 2002, 91, 6710.	2.5	95
35	Light engineering of the polariton landscape in semiconductor microcavities. Physical Review B, 2010, 82, .	3.2	92
36	Diode-pumped broadband vertical-external-cavity surface-emitting semiconductor laser applied to high-sensitivity intracavity absorption spectroscopy. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 1589.	2.1	87

#	Article	IF	CITATIONS
37	Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors. Optics Express, 2005, 13, 8960.	3.4	87
38	Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 μm. Applied Physics Letters, 2000, 76, 3430-3432.	3.3	85
39	Exploring light propagating in photonic crystals with Fourier optics. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2964.	2.1	85
40	Spontaneous Emission Enhancement of Quantum Dots in a Photonic Crystal Wire. Physical Review Letters, 2005, 95, 183901.	7.8	82
41	Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 469.	2.1	79
42	Squeezing in semiconductor microcavities in the strong-coupling regime. Physical Review A, 2004, 69, .	2.5	79
43	Temperature tuning of the optical properties of planar photonic crystal microcavities. Applied Physics Letters, 2004, 84, 846-848.	3.3	78
44	Strongly Driven Semiconductor Microcavities: From the Polariton Doublet to an ac Stark Triplet. Physical Review Letters, 1998, 80, 4733-4736.	7.8	72
45	Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals. Applied Physics Letters, 1997, 71, 738-740.	3.3	71
46	Toward ultrahigh-efficiency aluminum oxide microcavity light-emitting diodes: guided mode extraction by photonic crystals. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 238-247.	2.9	71
47	Parametric Polariton Amplification in Semiconductor Microcavities. Physical Review Letters, 2001, 87, 127403.	7.8	68
48	Optical study of two-dimensional InP-based photonic crystals by internal light source technique. IEEE Journal of Quantum Electronics, 2002, 38, 786-799.	1.9	68
49	Coherence effects in light scattering of two-dimensional photonic disordered systems: Elastic scattering of cavity polaritons. Physical Review B, 2000, 61, R13333-R13336.	3.2	65
50	Omnidirectional and compact guided light extraction from Archimedean photonic lattices. Applied Physics Letters, 2003, 83, 1283-1285.	3.3	65
51	High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate. Applied Physics Letters, 2012, 100, .	3.3	64
52	Fabrication of low loss two-dimensional InP photonic crystals by inductively coupled plasma etching. Journal of Applied Physics, 2004, 95, 2242-2245.	2.5	63
53	Small optical volume terahertz emitting microdisk quantum cascade lasers. Applied Physics Letters, 2007, 90, 141114.	3.3	62
54	Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities. Physical Review A, 1993, 48, 2246-2250.	2.5	61

#	Article	IF	CITATIONS
55	Light transport regimes in slow light photonic crystal waveguides. Physical Review B, 2009, 80, .	3.2	61
56	High-finesse disk microcavity based on a circular Bragg reflector. Applied Physics Letters, 1998, 73, 1314-1316.	3.3	60
57	Spectral tuning and near-field imaging of photonic crystal microcavities. Physical Review B, 2008, 78, .	3.2	60
58	Statistics of the disorder-induced losses of high-Q photonic crystal cavities. Optics Express, 2013, 21, 28233.	3.4	57
59	Integrated photonics on silicon with wide bandgap GaN semiconductor. Applied Physics Letters, 2013, 102, .	3.3	56
60	Complex-coupled photonic crystal THz lasers with independent loss and refractive index modulation. Optics Express, 2011, 19, 10707.	3.4	55
61	Spin Rings in Bistable Planar Semiconductor Microcavities. Physical Review Letters, 2010, 105, 216403.	7.8	54
62	Coherent exciton-photon dynamics in semiconductor microcavities:The influence of inhomogeneous broadening. Physical Review B, 1997, 55, 7084-7090.	3.2	53
63	Near-infrared microcavities confined by two-dimensional photonic bandgap crystals. Electronics Letters, 1999, 35, 228.	1.0	53
64	Terahertz quantum cascade lasers based on two-dimensional photonic crystal resonators. Optics Express, 2008, 16, 5206.	3.4	53
65	Excitonic absorption in modulation-doped GaAs/AlxGa1â^'xAs quantum wells. Physical Review B, 1988, 38, 1246-1250.	3.2	52
66	Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals. IEEE Journal of Quantum Electronics, 2002, 38, 770-785.	1.9	52
67	Early stages of continuous wave experiments on cavity-polaritons. Physica Status Solidi (B): Basic Research, 2005, 242, 2167-2196.	1.5	52
68	Fourier analysis of Bloch wave propagation in photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1179.	2.1	52
69	Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals. Lab on A Chip, 2013, 13, 3268.	6.0	52
70	Spatial optical beam steering with an AlGaAs integrated phased array. Applied Optics, 1993, 32, 3220.	2.1	51
71	Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal. Applied Physics Letters, 2001, 79, 2514-2516.	3.3	50
72	Improved 60° bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals. Journal of Lightwave Technology, 2002, 20, 1198-1203.	4.6	44

#	Article	IF	CITATIONS
73	Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica, 2020, 7, 1126.	9.3	44
74	Diffraction efficiency and guided light control by two-dimensional photonic-bandgap lattices. IEEE Journal of Quantum Electronics, 1999, 35, 1045-1052.	1.9	42
75	Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals. Applied Physics Letters, 2003, 82, 1009-1011.	3.3	42
76	Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation. Optics Letters, 2006, 31, 1238.	3.3	42
77	Resonant Rayleigh scattering versus incoherent luminescence in semiconductor microcavities. Physical Review B, 1998, 58, R10175-R10178.	3.2	40
78	Room temperature exciton-photon Rabi splitting in a semiconductor microcavity. European Physical Journal Special Topics, 1993, 03, 51-58.	0.2	39
79	Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths. Applied Physics Letters, 2007, 91, .	3.3	38
80	Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides. Optics Letters, 2009, 34, 359.	3.3	38
81	High-Q silicon photonic crystal cavity for enhanced optical nonlinearities. Applied Physics Letters, 2014, 105, .	3.3	38
82	Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon. APL Photonics, 2017, 2, .	5.7	38
83	Fabrication of two-dimensional InP-based photonic crystals by chlorine based chemically assisted ion beam etching. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 707.	1.6	36
84	Liquid crystal infiltration of InP-based planar photonic crystals. Journal of Applied Physics, 2006, 99, 103105.	2.5	36
85	Optical tuning of planar photonic crystals infiltrated with organic molecules. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2165.	2.1	35
86	Lasing properties of disk microcavity based on a circular Bragg reflector. Applied Physics Letters, 1999, 75, 3051-3053.	3.3	34
87	Dynamics of island formation in the growth of InAs/InP quantum wells. Journal of Crystal Growth, 1994, 136, 278-281.	1.5	33
88	Spinâ€polarized photoemission from AlGaAs/GaAs heterojunction: A convenient highly polarized electron source. Applied Physics Letters, 1989, 54, 632-634.	3.3	31
89	Structural and electrooptical characteristics of quantum dots emitting at 1.3 μm on gallium arsenide. IEEE Journal of Quantum Electronics, 2001, 37, 1050-1058.	1.9	31
90	Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photon sources. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3693-3696.	0.8	31

#	Article	IF	CITATIONS
91	Photoemission from a Superlattice and a Single Quantum Well. Physical Review Letters, 1985, 55, 734-737.	7.8	30
92	Properties of GaAs on Si grown by molecular beam epitaxy. Critical Reviews in Solid State and Materials Sciences, 1990, 16, 91-114.	12.3	30
93	Gram-type differentiation of bacteria with 2D hollow photonic crystal cavities. Applied Physics Letters, 2018, 113, .	3.3	29
94	Observation of the integer quantum Hall effect by magnetic coupling to a Corbino ring. Physical Review B, 1995, 51, 9752-9756.	3.2	28
95	Resonant photoluminescence of semiconductor microcavities:The role of acoustic phonons in polariton relaxation. Physical Review B, 1997, 55, R4867-R4870.	3.2	28
96	Disorder-induced losses in planar photonic crystals. Optics Letters, 2006, 31, 1426.	3.3	28
97	Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics. Optics Letters, 2007, 32, 2723.	3.3	28
98	Local infiltration of planar photonic crystals with UV-curable polymers. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1562.	2.1	28
99	Continuousâ€wave vertically emitting photonic crystal terahertz laser. Laser and Photonics Reviews, 2013, 7, L45.	8.7	28
100	In-plane microcavity resonators with two-dimensional photonic bandgap mirrors. IEE Proceedings: Optoelectronics, 1998, 145, 373-378.	0.8	26
101	Diffraction of cylindrical Bragg reflectors surrounding an in-plane semiconductor microcavity. Physical Review B, 2000, 61, 4806-4812.	3.2	26
102	Influence of residual disorder on the anticrossing of Bloch modes probed in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>k</mml:mi>space. Physical Review B, 2008, 78, .</mml:math 	3.2	26
103	Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap. Journal of Applied Physics, 2010, 108, .	2.5	26
104	Resonant Raman studies of confined LO modes and interface modes in a small-period GaAs/AlAs superlattice. Physical Review B, 1989, 39, 1696-1702.	3.2	25
105	Artificial band discontinuities at GaAs homojunctions. Physical Review B, 1993, 47, 6455-6459.	3.2	25
106	Influence of the device-width on the accuracy of quantization in the integer quantum Hall effect. IEEE Transactions on Instrumentation and Measurement, 1995, 44, 254-257.	4.7	25
107	Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities. Optics Letters, 2012, 37, 4588.	3.3	25
108	Strain and alloying effects on the electronic and vibrational properties of InyAl1â^'yAs on InP. Journal of Applied Physics, 1995, 78, 470-477.	2.5	23

#	Article	IF	CITATIONS
109	Grating-assisted superresolution of slow waves in Fourier space. Physical Review B, 2007, 76, .	3.2	23
110	Fourier space imaging of light localization at a photonic band-edge located below the light cone. Physical Review B, 2009, 79, .	3.2	23
111	Hybrid PDMS/glass microfluidics for high resolution imaging and application to sub-wavelength particle trapping. Lab on A Chip, 2016, 16, 465-470.	6.0	23
112	Directionally dependent confinement in photonic-crystal microcavities. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 2043.	2.1	22
113	Title is missing!. Optical and Quantum Electronics, 2002, 34, 79-89.	3.3	22
114	Cathodoluminescence investigations of three-dimensional island formation in quantum wells. Journal of Crystal Growth, 1995, 147, 27-34.	1.5	21
115	Characterization of the feature-size dependence in Arâ^•Cl[sub 2] chemically assisted ion beam etching of InP-based photonic crystal devices. Journal of Vacuum Science & Technology B, 2007, 25, 1.	1.3	21
116	Miniband dispersion in GaAs/AlxGa1â^'xAs superlattices with wide wells and very thin barriers. Applied Physics Letters, 1988, 53, 2666-2668.	3.3	20
117	Formation and optical properties of islands in ultra-thin InAs/InP quantum wells grown by chemical beam epitaxy. Superlattices and Microstructures, 1993, 13, 67-70.	3.1	20
118	Interface roughness in quantum wells prepared with growth interruptions. Applied Physics Letters, 1993, 62, 843-845.	3.3	20
119	Interband transitions in InxGa1â^'x As/GaAs strained layer superlattices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1989, 7, 1106.	1.6	19
120	Characterization of InGaAs and InAlAs layers on InP by four-crystal high resolution X-ray diffraction and wedge transmission electron microscopy. Journal of Crystal Growth, 1991, 111, 456-460.	1.5	19
121	Magnetopolaritons in a semiconductor quantum well microcavity. Physical Review B, 1997, 56, 4068-4074.	3.2	19
122	Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design. IEEE Journal of Quantum Electronics, 2002, 38, 816-824.	1.9	19
123	Device simultaneous determination of the source and cavity parameters of a microcavity light-emitting diode. Journal of Applied Physics, 1999, 85, 2994-2996.	2.5	18
124	Transmission spectroscopy of photonic crystal based waveguides with resonant cavities. Journal of Applied Physics, 2002, 91, 4791-4794.	2.5	18
125	Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide. Applied Physics Letters, 2004, 85, 3998-4000.	3.3	18
126	Optical characterisation of 2D InP-based photonic crystals fabricated by inductively coupled plasma etching. Electronics Letters, 2002, 38, 962.	1.0	18

#	Article	IF	CITATIONS
127	Interface charge polarity of a polar on nonpolar semiconductor GaAs/Si with Ga and As prelayers. Applied Physics Letters, 1986, 49, 1257-1259.	3.3	17
128	Raman study of a single InP/InAs/InP strained quantum well. Solid State Communications, 1992, 84, 705-709.	1.9	17
129	As/P interdiffusion in ultrathin InAs/InP strained quantum wells. Applied Physics Letters, 1994, 65, 341-343.	3.3	17
130	Nanofabrication of high quality photonic crystals for integrated optics circuits. Nanotechnology, 2002, 13, 341-345.	2.6	17
131	Two-mode fringes in planar photonic crystal waveguides with constrictions: a probe that is sensitive to propagation losses. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2403.	2.1	16
132	Ab initiotight-binding approach to photonic-crystal based coupled cavity waveguides. Journal of Applied Physics, 2004, 95, 806-809.	2.5	16
133	Statistical analysis of subnanometer residual disorder in photonic crystal waveguides: Correlation between slow light properties and structural properties. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 051601.	1.2	16
134	Properties of alloyed AuGeNi-contacts on GaAs/Ga/AlAs-heterostructures. IEEE Transactions on Instrumentation and Measurement, 1991, 40, 228-230.	4.7	15
135	Measurements of Alâ€AlInAs Schottky barriers preparedinsituby molecular beam epitaxy. Applied Physics Letters, 1992, 60, 1099-1101.	3.3	14
136	Photoemission study of a single GaAlAs/GaAs/GaAlAs quantum well. Surface Science, 1986, 168, 538-545.	1.9	13
137	Multi-wavelength operation and vertical emission in THz quantum-cascade lasers. Journal of Applied Physics, 2007, 101, 081726.	2.5	13
138	Photoreflectance spectroscopy investigation of two-dimensional cesium metallic clusters on GaAs(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2350-2359.	2.1	12
139	Investigation of GaAs/(Al,Ga)As multiple quantum wells grown on Ge and Si substrates by molecularâ€beam epitaxy. Journal of Applied Physics, 1987, 62, 4858-4862.	2.5	11
140	Radiation loss of photonic crystal coupled-cavity waveguides. Applied Physics Letters, 2009, 95, 111105.	3.3	11
141	Imaging of high- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> cavity optical modes by electron energy-loss microscopy. Physical Review B, 2013, 87, .	3.2	11
142	Ultra-wide-band structural slow light. Scientific Reports, 2018, 8, 14811.	3.3	11
143	Telecom-wavelength single-photon sources for quantum communications. Journal of Physics Condensed Matter, 2007, 19, 225005.	1.8	10
144	Theoretical Investigation of the Radiation Pattern From LEDs Incorporating Shallow Photonic Crystals. IEEE Journal of Quantum Electronics, 2009, 45, 1273-1283.	1.9	10

#	Article	IF	CITATIONS
145	Growth of GaInAs by chemical beam epitaxy. Journal of Crystal Growth, 1991, 107, 1057-1059.	1.5	9
146	High electron density and mobility in single and double planar doped InGaAs/InAlAs heterojunctions on InP. Journal of Crystal Growth, 1991, 111, 470-474.	1.5	9
147	Comparison of the quantized hall resistance in different GaAs/Al/sub x/Ga/sub 1-x/As heterostructures. IEEE Transactions on Instrumentation and Measurement, 1991, 40, 231-233.	4.7	9
148	Photoluminescence intensity in a semiconductor microcavity. Solid State Communications, 1996, 99, 317-321.	1.9	9
149	DC and RF characteristics of InAlAs/InGaAs dual-gate TEGFETs. Electronics Letters, 1991, 27, 631.	1.0	8
150	Design and characterization of top-emitting microcavity light-emitting diodes. Semiconductor Science and Technology, 2000, 15, 145-154.	2.0	8
151	Spontaneous emission model of lateral light extraction from heterostructure light-emitting diodes. Applied Physics Letters, 2000, 76, 3179-3181.	3.3	8
152	Excitation-induced coherence in a semiconductor microcavity. Physical Review B, 2002, 66, .	3.2	8
153	Recent results and latest views on microcavity LEDs. , 2004, 5366, 1.		8
154	A quantitative analysis of self-collimation effects in planar photonic crystals. Journal of Applied Physics, 2006, 99, 096108.	2.5	8
155	Cointegration of Gate-All-Around MOSFETs and Local Silicon-on-Insulator Optical Waveguides on Bulk Silicon. IEEE Nanotechnology Magazine, 2007, 6, 118-125.	2.0	8
156	Effect of growth interruptions on ultra-thin InAs/InP quantum wells grown by chemical beam epitaxy. Journal of Crystal Growth, 1992, 120, 155-156.	1.5	7
157	Scanning-tunneling-microscopy-induced optical spectroscopy of a single GaAs quantum well. Applied Physics Letters, 2000, 77, 3992-3994.	3.3	7
158	Bloch wave propagation in two-dimensional photonic crystals: Influence of the polarization. Optical and Quantum Electronics, 2005, 37, 293-307.	3.3	7
159	Spontaneous emission enhancement at a photonic wire miniband edge. Optics Letters, 2005, 30, 2113.	3.3	7
160	Coupling length of silicon-on-insulator directional couplers probed by Fourier-space imaging. Applied Physics Letters, 2008, 92, 151106.	3.3	7
161	Phase-sensitive Fourier space imaging of optical Bloch modes. Physical Review B, 2008, 77, .	3.2	7
162	Inhibited emission of electromagnetic modes confined in subwavelength cavities. Physical Review B, 2011, 84, .	3.2	7

#	Article	IF	CITATIONS
163	Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities. Applied Physics Letters, 2016, 109, .	3.3	7
164	Influence of Disorder and Finite-Size Effects on Slow Light Transport in Extended Photonic Crystal Coupled-Cavity Waveguides. ACS Photonics, 2018, 5, 4846-4853.	6.6	7
165	Molecular beam epitaxy growth of an ultrahigh finesse microcavity. Journal of Crystal Growth, 1995, 150, 1313-1317.	1.5	6
166	Relaxation of microcavity polariton. Superlattices and Microstructures, 1997, 22, 389-392.	3.1	6
167	AlGaInP-based microcavity light-emitting diodes: Controlled on-wafer detuning and measurement of the internal quantum efficiency. Applied Physics Letters, 1999, 75, 4052-4054.	3.3	6
168	Linear and non-linear behavior of cavity polaritons. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 625-630.	2.7	6
169	Direct observation of an ac Stark splitting in semiconductor microcavities excited above the continuum onset. Physical Review B, 2000, 61, R5113-R5116.	3.2	6
170	Measurement of cavity polariton dispersion curve. Superlattices and Microstructures, 1994, 15, 263.	3.1	5
171	Photoquenching of excitonic inhomogeneous linewidth in semiconductor microcavities. Solid State Communications, 1998, 106, 485-489.	1.9	5
172	Nonlinear reflectivity of semiconductor microcavities in the weak- and strong-coupling regimes: Experiment and theory. Physical Review B, 1998, 57, 9957-9964.	3.2	5
173	Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications. Comptes Rendus Physique, 2002, 3, 3-14.	0.9	5
174	Internal light source technique free from reabsorption losses for optical characterization of planar photonic crystals. Applied Physics Letters, 2004, 85, 5131-5133.	3.3	5
175	MBE growth of high finesse microcavities. Physica Status Solidi (B): Basic Research, 2005, 242, 2157-2166.	1.5	5
176	Propagation loss measurements and Fabry–Pérot mode analysis using out-of-plane light scattering in photonic crystal waveguides. Applied Physics Letters, 2005, 86, 111111.	3.3	5
177	Fabrication and characterization of point defect photonic crystal nanocavities at telecom wavelength. Microelectronic Engineering, 2007, 84, 1480-1483.	2.4	5
178	Near-field mapping of quantum dot emission from single-photonic crystal cavity modes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1965-1967.	2.7	5
179	Bloch mode excitation in two-dimensional photonic crystals imaged by Fourier optics. Physical Review B, 2009, 79, .	3.2	5
180	Group velocity and energy transport velocity near the band edge of a disordered coupled cavity waveguide: an analytical approach. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2095.	2.1	5

#	Article	IF	CITATIONS
181	Optical anisotropy due to exciton polaritons in Al1â^'xGaxAs-GaAs quantum wells. Solid State Communications, 1993, 86, 43-46.	1.9	4
182	Photoluminescence efficiency of semiconductor-microcavity-polaritons far from resonance. Solid State Communications, 1998, 106, 711-714.	1.9	4
183	Strong coupling regime in semiconductor microcavities. Comptes Rendus Physique, 2002, 3, 15-27.	0.9	4
184	Publisher's Note: Squeezing in semiconductor microcavities in the strong-coupling regime [Phys. Rev. A69, 031802 (2004)]. Physical Review A, 2004, 69, .	2.5	4
185	Low-loss photonic crystal and monolithic InP integration: bands, bends, lasers, and filters. , 2004, 5360, 119.		4
186	Impact of feature-size dependent etching on the optical properties of photonic crystal devices. Journal of Applied Physics, 2008, 103, 096106.	2.5	4
187	Recent progress in semiconductor microcavities. Physica Scripta, 1996, T66, 121-125.	2.5	4
188	Electroâ€optic AlGaAs spatial light deflector/modulator based on a grating phased array. Applied Physics Letters, 1991, 58, 2874-2876.	3.3	3
189	Excitons in microcavities: Cavity polariton photoluminescence. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1323-1332.	0.4	3
190	Linear response and Rayleigh scattering of cavity-polaritons. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 198-204.	2.7	3
191	Codirectional couplers in GaAs-based planar photonic crystals. Applied Physics Letters, 2005, 86, 081108.	3.3	3
192	Towards a LED based on a photonic crystal nanocavity for single photon sources at telecom wavelength. Microelectronic Engineering, 2008, 85, 1162-1165.	2.4	3
193	Energy and spin polarization analysis of near band gap photoemission in AlGaAs/GaAs heterostructures. Physica Scripta, 1988, 38, 458-461.	2.5	2
194	Semiconductor microcavity under magnetic field: From the weak coupling to the strong coupling regime. Solid-State Electronics, 1996, 40, 497-500.	1.4	2
195	Exciton-Photon Dynamics in Weakly and Strongly Excited Semiconductor Microcavities. Physica Status Solidi (B): Basic Research, 1998, 206, 375-386.	1.5	2
196	Collisional Broadening of Semiconductor Microcavity Polaritons. Physica Status Solidi A, 2002, 190, 435-440.	1.7	2
197	Superfluidity in polariton condensates. Journal of Physics: Conference Series, 2010, 210, 012060.	0.4	2
198	Quantum fluid properties of polaritons in semiconductor microcavities. Journal of Modern Optics, 2010, 57, 1900-1907.	1.3	2

#	Article	IF	CITATIONS
199	InGaAs/GaAs vertical cavity surface emitting laser with hybrid top mirror. Microelectronic Engineering, 1992, 18, 267-272.	2.4	1
200	Optical Stark Effect and Coherent Gain of Excitons in a Semiconductor Microcavity. Physica Status Solidi A, 1997, 164, 23-27.	1.7	1
201	<title>High-efficiency top-emitting microcavity light-emitting diodes</title> . , 1999, , .		1
202	Nonlinear reflectivity of strongly coupled exciton–photon systems under resonant and non-resonant pumping. Journal of Luminescence, 2000, 85, 261-270.	3.1	1
203	Temperature tuning of the optical properties of planar photonic crystal microcavities. , 2004, 5450, 311.		1
204	Toward real-world devices in InP-based PCs. , 2004, 5360, 77.		1
205	Photonic lattice-based quantum cascade lasers at terahertz frequencies. , 2006, , .		1
206	Numerical modelling of optical trapping in hollow photonic crystal cavities. Optical and Quantum Electronics, 2012, 44, 161-167.	3.3	1
207	Gram-type Differentiation of Bacteria with 2D Hollow Photonic Crystal Cavities. , 2018, , .		1
208	Diode-pumped broadband vertical external cavity surface emitting semiconductor lasers. Application to high sensitivity intracavity absorption spectroscopy. European Physical Journal Special Topics, 2000, 10, Pr8-203.	0.2	1
209	Comment on â€~â€~Interface charge polarity of a polar on nonpolar semiconductor GaAs/Si with Ga and As prelayers'' [Appl. Phys. Lett.49, 1257 (1986)]. Applied Physics Letters, 1987, 51, 1756-1756.	3.3	0
210	Photoemission from AlGaAs/GaAs superlattices. Applied Surface Science, 1992, 56-58, 632-636.	6.1	0
211	Growth and characterization of ultrathin InAs/GaAs quantum wells. , 1993, 1985, 118.		0
212	Magneto luminescence of As-grown InAs/InP quantum well islands. Physica Scripta, 1994, T54, 81-83.	2.5	0
213	Waveguide Microcavities with Photonic Crystal Mirrors. Optics and Photonics News, 1999, 10, 22.	0.5	0
214	Optical study of 2D photonic crystals in an InP/GaInAsP slab waveguide structure. Materials Research Society Symposia Proceedings, 2001, 694, 1.	0.1	0
215	880-nm surface-emitting microcavity light-emitting diode. , 2001, , .		0
216	Fourier analysis of Bloch wave propagation in two-dimensional photonic crystals. , 2004, 5450, 150.		0

#	Article	IF	CITATIONS
217	Polariton scattering processes under resonant excitation in a strongly coupled semiconductor microcavity. Semiconductor Science and Technology, 2004, 19, 1104-1112.	2.0	0
218	Diffraction Efficiency of 2D Photonic Crystal Structures on Light Emitting Diodes. , 2006, , .		0
219	Feature size effects in chemically assisted ion beam etching of InP-based photonic crystals. , 2006, , .		Ο
220	High Numerical Aperture Real and Fourier Space Investigation of Planar Photonic Devices Operating below the Light Cone. , 2007, , .		0
221	Control of the Spontaneous Emission of Single InAs Quantum Dots at 1.3μm in Point-Defect Photonic Crystal Nanocavities. , 2007, , .		0
222	Characterisation of Photonic Crystal and Nanophotonics Devices with Fourier Optics. , 2008, , .		0
223	In-plane and surface emitting high performance THz pillar type photonic crystal lasers with complete photonic bandgaps. , 2009, , .		0
224	Single particle detection and self-trapping in hollow photonic crystal cavities integrated in a microfluidic environment. , 2012, , .		0
225	Surface emitting Terahertz Photonic Crystal Quantum Cascade Laser realized by Bragg boundary condition. , 2012, , .		0
226	Terahertz photonic crystal quantum cascade laser coupled to a second order Bragg vertical extractor. , 2013, , .		0
227	Self-trapping and back-action effects in hollow photonic crystal cavity optical traps. , 2013, , .		0
228	Resonant optical trapping and back-action effects in a hollow photonic crystal cavity. , 2013, , .		0
229	Resonant optical trapping and back-action effects in hollow photonic crystal cavities. , 2013, , .		0
230	Experimental demonstration of resonant optical trapping and back-action effects in a hollow photonic crystal cavity. , 2013, , .		0
231	Analysis of the Brownian motion of singly trapped spheres in hollow photonic crystal cavities. , 2016, , .		0
232	Resonant Optical Trapping in Microfluidic-Integrated Hollow Photonic Crystal Cavities. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 561-561.	0.3	0
233	Demonstration of continuous-wave second and third harmonic generation in high-Q gallium nitride photonic crystal cavities. , 2017, , .		0
234	Broadband slow light in genetically optimized coupled-cavity waveguides with GBP exceeding 0.45. , 2017, , .		0

#	Article	IF	CITATIONS
235	Finite-Size and Disorder Effects on Slow-Light Propagation in an Extended Photonic Crystal Coupled-Cavity Waveguides with Group-Index Bandwidth Product Exceeding 0.47. , 2018, , .		0
236	Optical Trapping and Gram-Type Differentiation of Living Bacteria in 2D Hollow Photonic Crystal Cavities. , 2019, , .		0
237	Microfluidic integrated hollow photonic crystal cavities for single particle and resonant field interaction. , 2012, , .		Ο
238	Microcavité de semiconducteurs sous champ magnétique : de la règle d'or de Fermi au splitting de Rabi. Annales De Physique, 1995, 20, 541-547.	0.2	0
239	Probing finite-size effects and disorder in extended slow light photonic crystal coupled-cavity waveguides. , 2018, , .		Ο
240	Doubly Resonant Second Harmonic Generation in Photonic Crystal Cavities via Bound States in the Continuum. , 2020, , .		0
241	Near Infrared Optical Characterization Techniques for Photonic Crystals. , 2008, , 173-192.		0
242	Efficient second harmonic generation in a doubly resonant photonic crystal cavity based on a bound state in the continuum. , 2020, , .		0