Quanlong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8783318/publications.pdf

Version: 2024-02-01

33	8,278	24 h-index	31
papers	citations		g-index
33	33	33	5743
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Noble Metalâ€Free Heterojunction of Ultrathin Ti ₃ C ₂ MXene/WO ₃ for Boosted Visibleâ€Lightâ€Driven Photoreactivity. Advanced Sustainable Systems, 2023, 7, .	5.3	8
2	Recent advances in solarâ€driven CO ₂ reduction over gâ€C ₃ N ₄ â€based photocatalysts. , 2023, 5, .		38
3	Delocalized Electrons via In Situ CNT Growth on Au/gâ€C ₃ N ₄ for Boosting Photocatalytic H ₂ Evolution. Advanced Sustainable Systems, 2023, 7, .	5.3	8
4	2D/2D nanohybrid of Ti3C2 MXene/WO3 photocatalytic membranes for efficient water purification. Ceramics International, 2022, 48, 3659-3668.	4.8	36
5	Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chinese Journal of Catalysis, 2022, 43, 350-358.	14.0	66
6	Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects. Journal of Materials Science and Technology, 2022, 114, 143-164.	10.7	28
7	Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance. Chemical Engineering Journal, 2022, 437, 135153.	12.7	102
8	Design principle of S-scheme heterojunction photocatalyst. Journal of Materials Science and Technology, 2022, 124, 171-173.	10.7	257
9	Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation. Journal of Materials Science and Technology, 2022, 123, 41-48.	10.7	61
10	Enhanced Selective Photooxidation of Toluene to Benzaldehyde over Co ₃ O ₄ â€Modified BiOBr/AgBr Sâ€Scheme Heterojunction. Solar Rrl, 2022, 6, .	5.8	7
11	Graphene oxide-based heterojunction photocatalysts. , 2022, , 173-188.		0
12	Recent Advances in Opal/Inverted Opal Photonic Crystal Photocatalysts. Solar Rrl, 2021, 5, 2000541.	5.8	31
13	Vertical growth of SnS ₂ nanobelt arrays on CuSbS ₂ nanosheets for enhanced photocatalytic reduction of CO ₂ . Chemical Communications, 2021, 57, 10419-10422.	4.1	10
14	Gd-doped CuBi2O4/CuO heterojunction film photocathodes for photoelectrochemical H2O2 production through oxygen reduction. Nano Research, 2021, 14, 3439-3445.	10.4	23
15	ZnO nanowire arrays decorated 3D N-doped reduced graphene oxide nanotube framework for enhanced photocatalytic CO2 reduction performance. Journal of CO2 Utilization, 2021, 50, 101584.	6.8	25
16	High-efficient separation of photoinduced carriers on double Z-scheme heterojunction for superior photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2020, 564, 303-312.	9.4	46
17	S-Scheme Heterojunction Photocatalyst. CheM, 2020, 6, 1543-1559.	11.7	1,993
18	Oxygen vacancy engineering of Bi2O2CO3 hierarchical microspheres for enhanced adsorption of Cd2+ions and photocatalytic degradation of Rodamine B. Applied Surface Science, 2020, 512, 145647.	6.1	36

#	Article	IF	Citations
19	Controllable Synthesis of g-C ₃ N ₄ Inverse Opal Photocatalysts for Superior Hydrogen Evolution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	20
20	Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Applied Surface Science, 2019, 495, 143555.	6.1	166
21	Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. Applied Catalysis B: Environmental, 2019, 255, 117770.	20.2	284
22	Review on Metal Sulphideâ€based Zâ€scheme Photocatalysts. ChemCatChem, 2019, 11, 1394-1411.	3.7	439
23	Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 2019, 243, 556-565.	20.2	1,895
24	Constructing 2D/2D Fe ₂ O ₃ /g ₃ N ₄ Direct Zâ€6cheme Photocatalysts with Enhanced H ₂ Generation Performance. Solar Rrl, 2018, 2, 1800006.	5.8	403
25	Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Materials Today, 2018, 21, 1042-1063.	14.2	1,134
26	Enhanced visible-light photocatalytic H ₂ -generation activity of carbon/g-C ₃ N ₄ nanocomposites prepared by two-step thermal treatment. Dalton Transactions, 2017, 46, 10611-10619.	3.3	128
27	Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst. Carbon, 2017, 118, 241-249.	10.3	356
28	Cubic anatase TiO ₂ nanocrystals with enhanced photocatalytic CO ₂ reduction activity. Chemical Communications, 2015, 51, 7950-7953.	4.1	209
29	Layered manganese oxides for formaldehyde-oxidation at room temperature: the effect of interlayer cations. RSC Advances, 2015, 5, 100434-100442.	3.6	92
30	Origin of Tunable Photocatalytic Selectivity of Wellâ€Defined αâ€Fe ₂ O ₃ Nanocrystals. Small, 2014, 10, 674-679.	10.0	88
31	Catalytic activity of gold nanoparticles supported on KNbO3 microcubes. Catalysis Today, 2014, 224, 140-146.	4.4	29
32	Efficient Removal of Formaldehyde by Nanosized Gold on Well-Defined CeO ₂ Nanorods at Room Temperature. Environmental Science & Environmenta	10.0	194
33	Enhanced Visibleâ€Light Hydrogenâ€Production Activity of Copperâ€Modified Zn _{<i>x</i>} Cd _{1â^²<i>x</i>} S. ChemSusChem, 2013, 6, 2009-2015.	6.8	66