
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8782733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chemistry, 2022, 371, 131135.	8.2	31
2	Plasma dynamics, instabilities and OH generation in a pulsed atmospheric pressure plasma with liquid cathode: a diagnostic study. Plasma Sources Science and Technology, 2022, 31, 025008.	3.1	13
3	Characterization of plasma catalytic decomposition of methane: role of atomic O and reaction mechanism. Journal Physics D: Applied Physics, 2022, 55, 155204.	2.8	4
4	Production and diffusion of H ₂ O ₂ during the interaction of a direct current pulsed atmospheric pressure plasma jet on a hydrogel. Journal Physics D: Applied Physics, 2022, 55, 185201.	2.8	7
5	Experimental and modeling studies of the plasma chemistry in a humid Ar radiofrequency atmospheric pressure plasma jet. Journal Physics D: Applied Physics, 2022, 55, 225206.	2.8	8
6	Synergies between polyacrylamide polymerization and nanoparticle generation using an atmospheric pressure plasma jet. Plasma Processes and Polymers, 2022, 19, .	3.0	4
7	The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal Physics D: Applied Physics, 2022, 55, 373001.	2.8	139
8	Absolute ion density measurements in the afterglow of a radiofrequency atmospheric pressure plasma jet. Journal Physics D: Applied Physics, 2021, 54, 15LT01.	2.8	10
9	Tuning plasma parameters to control reactive species fluxes to substrates in the context of plasma catalysis. Journal Physics D: Applied Physics, 2021, 54, 214005.	2.8	10
10	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, .	2.5	58
11	Kinetic Mechanisms Driving Ag+ Reduction and Nanoparticle Synthesis By Atmospheric Pressure Plasma-Driven Solution Electrochemistry. ECS Meeting Abstracts, 2021, MA2021-01, 868-868.	0.0	0
12	Townsend to glow discharge transition for a nanosecond pulse plasma in helium: space charge formation and resulting electric field dynamics. Plasma Sources Science and Technology, 2021, 30, 055004.	3.1	20
13	Non-Thermal Plasma as a Novel Strategy for Treating or Preventing Viral Infection and Associated Disease. Frontiers in Physics, 2021, 9, .	2.1	38
14	Absolute OH density and gas temperature measurements by laser induced fluorescence in a microsecond pulsed discharge generated in a conductive NaCl solution. Plasma Sources Science and Technology, 2021, 30, 075016.	3.1	6
15	Analysis of the Ion Conversion Mechanisms in the Effluent of Atmospheric Pressure Plasma Jets in Ar with Admixtures of O2, H2O and Air. Plasma Chemistry and Plasma Processing, 2021, 41, 1569-1594.	2.4	4
16	Ion fluxes and memory effects in an Ar–O ₂ modulated radiofrequency-driven atmospheric pressure plasma jet. Plasma Sources Science and Technology, 2021, 30, 105007.	3.1	6
17	Identification of the most stable silver cluster ions produced under plasma solution conditions. Molecular Physics, 2021, 119, .	1.7	3
18	Plasma-droplet interaction study to assess transport limitations and the role of ^{â‹} OH, O ^{â‹} ,H ^{â‹} ,O ₂ (a ¹ Δ _g),O ₃ , He(2 ³ S) and Ar(1s ₅) in formate decomposition. Plasma Sources Science and Technology, 2021, 30, 115003.	3.1	10

#	Article	IF	CITATIONS
19	Spatially and temporally resolved H and OH densities in a nanosecond pulsed plasma jet: an analysis of the radical generation, transport, recombination and memory effects. Journal Physics D: Applied Physics, 2021, 54, 115202.	2.8	17
20	The interaction of an atmospheric pressure plasma jet with liquid water: dimple dynamics and its impact on crystal violet decomposition. Journal Physics D: Applied Physics, 2021, 54, 045204.	2.8	11
21	Treatment of Biofilms by Atmospheric Pressure RF Plasma Jets: Touching and Remote *. , 2021, , .		0
22	Reactive Species Transport To Water Micro-Droplets In Atmospheric Pressure Rf Glow Discharges. , 2021, , .		0
23	Plasma–liquid interactions. Journal of Applied Physics, 2021, 130, .	2.5	11
24	Bactericidal Efficacy of a Two-Dimensional Array of Integrated, Coaxial, Microhollow, Dielectric Barrier Discharge Plasma Against Salmonella enterica Serovar Heidelberg. Foodborne Pathogens and Disease, 2020, 17, 157-165.	1.8	18
25	ÃŒn situ inactivation of human norovirus GII.4 by cold plasma: Ethidium monoazide (EMA)-coupled RT-qPCR underestimates virus reduction and fecal material suppresses inactivation. Food Microbiology, 2020, 85, 103307.	4.2	38
26	Absolute spatially and timeâ€resolved O, O ₃ , and air densities in the effluent of a modulated RFâ€driven atmospheric pressure plasma jet obtained by molecular beam mass spectrometry. Plasma Processes and Polymers, 2020, 17, 1900163.	3.0	20
27	Electric field dynamics in an atmospheric pressure helium plasma jet impinging on a substrate. Physics of Plasmas, 2020, 27, .	1.9	24
28	Modeling of an atmospheric pressure plasma-liquid anodic interface: Solvated electrons and silver reduction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	25
29	O·, H·, and ·OH radical etching probability of polystyrene obtained for a radio frequency driven atmospheric pressure plasma jet. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	17
30	Spatially resolved absolute densities of reactive species and positive ion flux in He-O2 RF-driven atmospheric pressure plasma jet: touching and non-touching with dielectric substrate. Journal Physics D: Applied Physics, 2020, 53, 28LT01.	2.8	10
31	Spatially resolved density measurements of singlet delta oxygen in a non-equilibrium atmospheric pressure plasma jet by molecular beam mass spectrometry. Plasma Sources Science and Technology, 2020, 29, 045023.	3.1	17
32	Inactivation of virus and bacteria using cold atmospheric pressure air plasmas and the role of reactive nitrogen species. Journal Physics D: Applied Physics, 2020, 53, 434004.	2.8	48
33	Rapid inactivation of airborne porcine reproductive and respiratory syndrome virus using an atmospheric pressure air plasma. Plasma Processes and Polymers, 2020, 17, 1900269.	3.0	34
34	Absolute atomic hydrogen density measurements in an atmospheric pressure plasma jet: generation, transport and recombination from the active discharge region to the effluent. Plasma Sources Science and Technology, 2020, 29, 04LT01.	3.1	21
35	Hollow plasma structure during the breakdown phase of nanosecond pulsed pin–pin discharges generated with overvoltage. Plasma Sources Science and Technology, 2020, 29, 035020.	3.1	3
36	Comparative evaluation of the virucidal effect of remote and direct cold air plasmas with UV . Plasma Processes and Polymers, 2020, 17, 1900234.	3.0	7

#	Article	IF	CITATIONS
37	Characterization of an RF-driven argon plasma at atmospheric pressure using broadband absorption and optical emission spectroscopy. Journal of Applied Physics, 2020, 128, .	2.5	14
38	Controlled plasma–droplet interactions: a quantitative study of OH transfer in plasma–liquid interaction. Plasma Sources Science and Technology, 2020, 29, 095002.	3.1	34
39	He(2 ³ <i>S</i> ₁) and He ₂ (<i>a</i> ³ Σ _u) Tj E absorption spectroscopy. Plasma Sources Science and Technology, 2019, 28, 125006.	TQq1 1 0.7 3.1	'84314 rgBT 16
40	Effect of water vapor on plasma processing at atmospheric pressure: Polymer etching and surface modification by an Ar/H2O plasma jet. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	21
41	Decomposition of Crystal Violet by an Atmospheric Pressure RF Plasma Jet: The Role of Radicals, Ozone, Near-Interfacial Reactions and Convective Transport. Plasma Chemistry and Plasma Processing, 2019, 39, 729-749.	2.4	35
42	Plasma kinetics in a nanosecond pulsed filamentary discharge sustained in Ar–H2O and H2O. Journal Physics D: Applied Physics, 2019, 52, 044003.	2.8	38
43	Reactive species responsible for the inactivation of feline calicivirus by a twoâ€dimensional array of integrated coaxial microhollow dielectric barrier discharges in air. Plasma Processes and Polymers, 2018, 15, 1700119.	3.0	56
44	Comparative toxicity assessment of novel Si quantum dots and their traditional Cd-based counterparts using bacteria models <i>Shewanella oneidensis</i> and <i>Bacillus subtilis</i> . Environmental Science: Nano, 2018, 5, 1890-1901.	4.3	37
45	Penetration of Ar and He RF-driven plasma jets into micrometer-sized capillary tubes. Journal Physics D: Applied Physics, 2018, 51, 414002.	2.8	14
46	Effect of plasma on gas flow and air concentration in the effluent of a pulsed cold atmospheric pressure helium plasma jet. Plasma Sources Science and Technology, 2018, 27, 095006.	3.1	34
47	Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Free Radical Biology and Medicine, 2018, 124, 275-287.	2.9	127
48	Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus. PLoS ONE, 2018, 13, e0194618.	2.5	42
49	Effect of air flow on the micro-discharge dynamics in an array of integrated coaxial microhollow dielectric barrier discharges. Plasma Sources Science and Technology, 2017, 26, 035001.	3.1	24
50	Effect of water vapor on plasma morphology, OH and H ₂ O ₂ production in He and Ar atmospheric pressure dielectric barrier discharges. Journal Physics D: Applied Physics, 2017, 50, 145201.	2.8	36
51	Singlet delta oxygen production in a 2D micro-discharge array in air: effect of gas residence time and discharge power. Journal Physics D: Applied Physics, 2017, 50, 105205.	2.8	24
52	Catalytic hydrodeoxygenation of anisole over nickel supported on plasma treated alumina–silica mixed oxides. RSC Advances, 2017, 7, 30990-30998.	3.6	28
53	Fast pulsed discharges. Plasma Sources Science and Technology, 2017, 26, 020201.	3.1	14
54	Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor. Journal Physics D: Applied Physics, 2017, 50, 03LT02.	2.8	36

#	Article	IF	CITATIONS
55	Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Science and Technology, 2017, 26, 123002.	3.1	230
56	Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production. Journal Physics D: Applied Physics, 2017, 50, 415204.	2.8	42
57	Emission considering self-absorption of OH to simultaneously obtain the OH density and gas temperature: validation, non-equilibrium effects and limitations. Plasma Sources Science and Technology, 2017, 26, 095007.	3.1	14
58	Plasma–surface interaction at atmospheric pressure: A case study of polystyrene etching and surface modification by Ar/O ₂ plasma jet. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 05C315.	2.1	28
59	The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal Physics D: Applied Physics, 2017, 50, 323001.	2.8	710
60	Ag+ reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	86
61	CO(B 1Σ+→A 1Î) Angstrom System for Gas Temperature Measurements in CO2 Containing Plasmas. Plasma Chemistry and Plasma Processing, 2017, 37, 29-41.	2.4	36
62	Calibration-free optical emission spectroscopy method for the measurements of gas temperature and OH density. , 2017, , .		1
63	Nitrogen metastable (N2(<i>A</i> 3Σu+)) in a cold argon atmospheric pressure plasma jet: Shielding and gas composition. Applied Physics Letters, 2016, 108, .	3.3	23
64	Inactivation of feline calicivirus by an atmospheric pressure 2D microdischarge array in air. , 2016, , .		1
65	Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways. Journal Physics D: Applied Physics, 2016, 49, 204001.	2.8	129
66	Mechanism of bacteria inactivation by an atmospheric pressure plasma jet. , 2016, , .		1
67	Plasma–liquid interactions: a review and roadmap. Plasma Sources Science and Technology, 2016, 25, 053002.	3.1	1,111
68	Investigation of an atmospheric pressure 2D-array of microdischarges in air using cross-correlation spectroscopy. , 2016, , .		0
69	Retrospective on â€~The 2012 Plasma Roadmap'. Journal Physics D: Applied Physics, 2016, 49, 431001.	2.8	6
70	Cold Atmospheric Pressure Plasma VUV Interactions With Surfaces: Effect of Local Gas Environment and Source Design. Plasma Processes and Polymers, 2016, 13, 1069-1079.	3.0	22
71	Is it possible to deduce the ground state OH density from relative optical emission intensities of the OH(<i>A</i> ² i£ ⁺ - <i>X</i> ² i _i) transition in atmospheric pressure non-equilibrium plasmas?—An analysis of self-absorption. Plasma Sources Science and Technology. 2016. 25. 04LT02.	3.1	5

72 Mechanism of silver nanoparicles production at the plasma-liquid interface. , 2016, , .

0

#	Article	IF	CITATIONS
73	Temperature and absolute oh density measurement by the relative emission spectroscopy in diffuse atmospheric-pressure RF glow discharges. , 2016, , .		0
74	Development of a Chronic Wound Healing Device1. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .	0.7	0
75	Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment. Journal Physics D: Applied Physics, 2016, 49, 08LT02.	2.8	14
76	A new flexible DBD device for treating infected wounds: <i>in vitro</i> and <i>ex vivo</i> evaluation and comparison with a RF argon plasma jet. Journal Physics D: Applied Physics, 2016, 49, 044001.	2.8	32
77	Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics. Journal Physics D: Applied Physics, 2015, 48, 015203.	2.8	41
78	Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex. Plasma Sources Science and Technology, 2015, 24, 045015.	3.1	15
79	Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases, 2015, 10, 029518.	1.6	226
80	Virucidal Effect of Cold Atmospheric Gaseous Plasma on Feline Calicivirus, a Surrogate for Human Norovirus. Applied and Environmental Microbiology, 2015, 81, 3612-3622.	3.1	82
81	Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy. Journal Physics D: Applied Physics, 2015, 48, 424008.	2.8	61
82	Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate. New Journal of Physics, 2014, 16, 123011.	2.9	58
83	Spatially - and temporally- resolved investigation of discharge in water in pin-to-pin geometry. , 2014, , .		Ο
84	Time and spatial resolved optical and electrical characteristics of continuous and time modulated RF plasmas in contact with conductive and dielectric substrates. European Physical Journal D, 2014, 68, 1.	1.3	34
85	OH Dynamics in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O upon the Addition of O2. Plasma Chemistry and Plasma Processing, 2014, 34, 605-619.	2.4	25
86	Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Science and Technology, 2014, 23, 023001.	3.1	379
87	The effect of collisional quenching of the O 3p ³ P _{<i>J</i>} state on the determination of the spatial distribution of the atomic oxygen density in an APPJ operating in ambient air by TALIF. Plasma Sources Science and Technology, 2014, 23, 025012.	3.1	22
88	Hydrogen Peroxide Production in an Atmospheric Pressure RF Glow Discharge: Comparison of Models and Experiments. Plasma Chemistry and Plasma Processing, 2014, 34, 1081-1099.	2.4	57
89	OH density measurements in nanosecond pulsed discharges in atmospheric pressure N ₂ –H ₂ O mixtures. Plasma Sources Science and Technology, 2014, 23, 015009.	3.1	18
90	Induced Liquid Phase Flow by RF Ar Cold Atmospheric Pressure Plasma Jet. IEEE Transactions on Plasma Science, 2014, 42, 2622-2623.	1.3	36

#	Article	IF	CITATIONS
91	<i>In situ</i> absolute air, O ₃ and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry. Journal Physics D: Applied Physics, 2014, 47, 224013.	2.8	45
92	Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet. New Journal of Physics, 2014, 16, 063054.	2.9	43
93	Time-resolved absolute OH density of a nanosecond pulsed discharge in atmospheric pressure He–H ₂ O: absolute calibration, collisional quenching and the importance of charged species in OH production. Plasma Sources Science and Technology, 2014, 23, 045005.	3.1	16
94	Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms. Journal Physics D: Applied Physics, 2013, 46, 205202.	2.8	82
95	Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure. Applied Physics Letters, 2013, 103, .	3.3	103
96	Absolute OH density measurements in the effluent of a cold atmospheric-pressure Ar–H ₂ 0 RF plasma jet in air. Plasma Sources Science and Technology, 2013, 22, 055014.	3.1	101
97	Atomic oxygen TALIF measurements in an atmospheric-pressure microwave plasma jet within situxenon calibration. Plasma Sources Science and Technology, 2013, 22, 055010.	3.1	50
98	Electron densities and energies of a guided argon streamer in argon and air environments. Plasma Sources Science and Technology, 2013, 22, 065011.	3.1	55
99	Antibacterial plasma at safe levels for skin cells. Journal Physics D: Applied Physics, 2013, 46, 422001.	2.8	11
100	Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. Journal Physics D: Applied Physics, 2013, 46, 175203.	2.8	253
101	NO production in an RF plasma jet at atmospheric pressure. Journal Physics D: Applied Physics, 2013, 46, 265202.	2.8	75
102	Temperature and NO density measurements by LIF and OES on an atmospheric pressure plasma jet. Journal Physics D: Applied Physics, 2013, 46, 095201.	2.8	55
103	Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. Journal Physics D: Applied Physics, 2013, 46, 464001.	2.8	161
104	Thermalization of rotational states of NO <i>A</i> 2Σ+(<i>v</i> = 0) in an atmospheric pressure plasma. Journal of Chemical Physics, 2013, 138, 204306.	3.0	9
105	Absolute calibration of OH density in a nanosecond pulsed plasma filament in atmospheric pressure He–H ₂ O: comparison of independent calibration methods. Journal Physics D: Applied Physics, 2013, 46, 464004.	2.8	55
106	Assessment of Potential Applications of Plasma with Liquid Water. , 2013, , 367-399.		12
107	Atmospheric Pressure Plasmas. , 2013, , 13-38.		3
	Time and spatially resolved OH dynamics in a papersonal pulsed filementary discharge in atmospheric		

¹⁰⁸ Time and spatially resolved OH dynamics in a nanosecond pulsed filamentary discharge in atmospheric pressure he-h2o., 2012,,.

#	Article	IF	CITATIONS
109	Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N ₂ and N ₂ /H ₂ O mixtures. Journal Physics D: Applied Physics, 2012, 45, 345201.	2.8	97
110	Absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure He–H ₂ O RF glow discharges. Plasma Sources Science and Technology, 2012, 21, 035019.	3.1	104
111	Temperature fitting of partially resolved rotational spectra. Journal of Instrumentation, 2012, 7, C02054-C02054.	1.2	6
112	Time and spatially resolved LIF of OH in a plasma filament in atmospheric pressure He–H ₂ O. Journal Physics D: Applied Physics, 2012, 45, 045205.	2.8	89
113	Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering. Plasma Sources Science and Technology, 2012, 21, 015003.	3.1	142
114	Transitions Between and Control of Guided and Branching Streamers in DC Nanosecond Pulsed Excited Plasma Jets. IEEE Transactions on Plasma Science, 2012, 40, 2888-2899.	1.3	45
115	The 2012 Plasma Roadmap. Journal Physics D: Applied Physics, 2012, 45, 253001.	2.8	511
116	Comparison of a He and an Ar Cold RF Atmospheric-Pressure Plasma Jet Operating in Continuous and Pulsed RF Modes. IEEE Transactions on Plasma Science, 2011, 39, 2332-2333.	1.3	6
117	Simultaneous Thomson and Raman Scattering on an Atmospheric-Pressure Plasma Jet. IEEE Transactions on Plasma Science, 2011, 39, 2382-2383.	1.3	9
118	Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets. Plasma Sources Science and Technology, 2011, 20, 065010.	3.1	242
119	Special issue featuring articles arising from the 11th High-Tech Plasma Processes Conference. Journal Physics D: Applied Physics, 2011, 44, 190301.	2.8	Ο
120	Filamentation of Diffuse \$hbox{He}-hbox{H}_{2} hbox{O}\$ Atmospheric Pressure Glow Discharges in a Metal Pin–Water Electrode Geometry. IEEE Transactions on Plasma Science, 2011, 39, 2634-2635.	1.3	6
121	Validation of gas temperature measurements by OES in an atmospheric air glow discharge with water electrode using Rayleigh scattering. Plasma Sources Science and Technology, 2011, 20, 024002.	3.1	44
122	Mass spectrometry study of positive and negative ions in a capacitively coupled atmospheric pressure RF excited glow discharge in He–water mixtures. Journal Physics D: Applied Physics, 2010, 43, 012003.	2.8	71
123	Global model of low-temperature atmospheric-pressure He + H ₂ O plasmas. Plasma Sources Science and Technology, 2010, 19, 025018.	3.1	297
124	Simulation of fluid–structure interaction with the interface artificial compressibility method. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 276-289.	2.1	44
125	Partitioned simulation of the interaction between an elastic structure and free surface flow. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 2085-2098.	6.6	49
126	Performance of partitioned procedures in fluid–structure interaction. Computers and Structures, 2010, 88, 446-457.	4.4	130

#	Article	IF	CITATIONS
127	Bubble simulations with an interface tracking technique based on a partitioned fluid–structure interaction algorithm. Journal of Computational and Applied Mathematics, 2010, 234, 2303-2310.	2.0	6
128	Main Species and Physicochemical Processes in Cold Atmosphericâ€pressure He + O ₂ Plas Plasma Processes and Polymers, 2010, 7, 846-865.	mas. 3.0	163
129	Optical emission spectroscopy as a diagnostic for plasmas in liquids: opportunities and pitfalls. Journal Physics D: Applied Physics, 2010, 43, 124005.	2.8	119
130	Electronic quenching of OH(<i>A</i>) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(<i>A</i> – <i>X</i>) emission. Plasma Sources Science and Technology, 2010, 19, 015016.	3.1	116
131	Spectroscopic study of an atmospheric pressure dc glow discharge with a water electrode in atomic and molecular gases. Plasma Sources Science and Technology, 2010, 19, 045004.	3.1	76
132	On OH production in water containing atmospheric pressure plasmas. Plasma Sources Science and Technology, 2010, 19, 045025.	3.1	207
133	Anode pattern formation in atmospheric pressure air glow discharges with water anode. Journal of Applied Physics, 2009, 105, .	2.5	66
134	A coupling algorithm for partitioned solvers applied to bubble and droplet dynamics. Computers and Fluids, 2009, 38, 613-624.	2.5	5
135	Is the Rotational Temperature of OH(A–X) for Discharges in and in Contact with Liquids a Good Diagnostic for Determining the Gas Temperature?. Plasma Processes and Polymers, 2009, 6, 751-762.	3.0	104
136	Non-thermal plasmas in and in contact with liquids. Journal Physics D: Applied Physics, 2009, 42, 053001.	2.8	1,050
137	Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sources Science and Technology, 2009, 18, 025017.	3.1	196
138	Time dependent optical emission spectroscopy of sub-microsecond pulsed plasmas in air with water cathode. Plasma Sources Science and Technology, 2009, 18, 045023.	3.1	51
139	Stability of a coupling technique for partitioned solvers in FSI applications. Computers and Structures, 2008, 86, 2224-2234.	4.4	123
140	Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode. Plasma Sources Science and Technology, 2008, 17, 025012.	3.1	118
141	DC-excited discharges in vapour bubbles in capillaries. Plasma Sources Science and Technology, 2008, 17, 025008.	3.1	44
142	Electrical discharges in the vapour phase in liquid-filled capillaries. Journal Physics D: Applied Physics, 2008, 41, 194007.	2.8	24
143	DC Electrical Breakdown in a Metal Pin–Water Electrode System. IEEE Transactions on Plasma Science, 2008, 36, 1138-1139.	1.3	41
144	Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems. Journal Physics D: Applied Physics, 2008, 41, 215201.	2.8	160

#	Article	IF	CITATIONS
145	Influence of the water surface on the glow-to-spark transition in a metal-pin-to-water electrode system. Plasma Sources Science and Technology, 2008, 17, 045014.	3.1	44
146	Characteristics of the different plasma regimes of discharges with water cathodes. , 2008, , .		0
147	Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin–water electrode system. Journal Physics D: Applied Physics, 2007, 40, 4779-4786.	2.8	94
148	Experimental investigation of dc electrical breakdown of long vapour bubbles in capillaries. Journal Physics D: Applied Physics, 2007, 40, 1937-1943.	2.8	45
149	Electrical breakdown of a bubble in a water-filled capillary. Journal of Applied Physics, 2006, 99, 116101.	2.5	20
150	Towards prevention and prediction of infectious diseases with virus sterilization using ultraviolet light and low-temperature plasma and bio-sensing devices for health and hygiene care. Japanese Journal of Applied Physics, 0, , .	1.5	2
151	Investigation of the Mechanisms Underpinning Plasma-Catalyst Interaction for the Conversion of Methane to Oxygenates. Plasma Chemistry and Plasma Processing, 0, , .	2.4	2