
Oleg A Krishtal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8780954/publications.pdf Version: 2024-02-01

OLEC A KDISHTAL

#	Article	IF	CITATIONS
1	A receptor for protons in the nerve cell membrane. Neuroscience, 1980, 5, 2325-2327.	2.3	484
2	The ASICs: Signaling molecules? Modulators?. Trends in Neurosciences, 2003, 26, 477-483.	8.6	416
3	Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. With an Appendix by Yu A. Shakhovalov. Journal of Physiology, 1977, 270, 545-568.	2.9	335
4	Receptor for ATP in the membrane of mammalian sensory neurones. Neuroscience Letters, 1983, 35, 41-45.	2.1	335
5	Excitatory amino acid receptors in hippocampal neurons: Kainate fails to desensitize them. Neuroscience Letters, 1986, 63, 225-230.	2.1	270
6	Effects of calcium and calciumâ€chelating agents on the inward and outward current in the membrane of mollusc neurones. Journal of Physiology, 1977, 270, 569-580.	2.9	266
7	Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature, 1975, 257, 691-693.	27.8	235
8	'Concentrationâ€clamp' study of gammaâ€aminobutyricâ€acidâ€induced chloride current kinetics in frog sensory neurones Journal of Physiology, 1986, 379, 171-185.	2.9	212
9	Purinoceptors on Neuroglia. Molecular Neurobiology, 2009, 39, 190-208.	4.0	205
10	A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. European Journal of Neuroscience, 1998, 10, 3898-3902.	2.6	179
11	A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience, 1981, 6, 2599-2601.	2.3	174
12	Cationic channels activated by extracellular atp in rat sensory neurons. Neuroscience, 1988, 27, 995-1000.	2.3	160
13	Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Research, 1987, 436, 352-356.	2.2	159
14	P2X receptors and synaptic plasticity. Neuroscience, 2009, 158, 137-148.	2.3	147
15	Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape â€~superslow' afterburst EPSC in rat hippocampus. Journal of Physiology, 2004, 558, 451-463.	2.9	142
16	Role for P2X Receptors in Long-Term Potentiation. Journal of Neuroscience, 2002, 22, 8363-8369.	3.6	129
17	lonotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somatoâ€sensory cortex. Journal of Physiology, 2002, 542, 529-536.	2.9	108
18	Comparative Patch-clamp Studies with Freshly Dissociated Rat Hippocampal and Striatal Neurons on the NMDA Receptor Antagonistic Effects of Amantadine and Memantine. European Journal of Neuroscience, 1996, 8, 446-454.	2.6	103

#	Article	IF	CITATIONS
19	Calcium inward current and related charge movements in the membrane of snail neurones Journal of Physiology, 1981, 310, 403-421.	2.9	89
20	Receptor for protons in the membrane of sensory neurons. Brain Research, 1981, 214, 150-154.	2.2	87
21	Receptors for ATP in rat sensory neurones: the structureâ€function relationship for ligands. British Journal of Pharmacology, 1988, 95, 1057-1062.	5.4	85
22	From Galvani to patch clamp: the development of electrophysiology. Pflugers Archiv European Journal of Physiology, 2006, 453, 233-247.	2.8	81
23	Properties of glycine-activated conductances in rat brain neurones. Neuroscience Letters, 1988, 84, 271-276.	2.1	80
24	Enhancement of glutamate release uncovers spillover-mediated transmission by N-methyl-d-aspartate receptors in the rat hippocampus. Neuroscience, 1999, 91, 1321-1330.	2.3	75
25	Calcium currents in snail neurones. Pflugers Archiv European Journal of Physiology, 1974, 348, 83-93.	2.8	69
26	Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride. Nature, 1977, 267, 70-72.	27.8	65
27	NMDA receptor agonists selectively block N-type calcium channels in hippocampal neurons. Nature, 1991, 349, 418-420.	27.8	65
28	P2X receptor-mediated excitatory synaptic currents in somatosensory cortex. Molecular and Cellular Neurosciences, 2003, 24, 842-849.	2.2	61
29	Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neuroscience Letters, 1987, 79, 326-330.	2.1	59
30	Hyperforin attenuates various ionic conductance mechanisms in the isolated hippocampal neurons of rat. Life Sciences, 1999, 65, 2395-2405.	4.3	58
31	A â€~receptor' for protons in small neurons of trigeminal ganglia: Possible role in nociception. Neuroscience Letters, 1981, 24, 243-246.	2.1	56
32	BN52021, a platelet activating factor antagonist, is a selective blocker of glycine-gated chloride channel. Neurochemistry International, 2002, 40, 647-653.	3.8	55
33	Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Annals of Neurology, 2010, 67, 680-683.	5.3	55
34	Blockade of response in enzyme-treated rat hippocampal neurons. Neuroscience Letters, 1988, 87, 75-79.	2.1	53
35	Cross-desensitization Reveals Pharmacological Specificity of Excitatory Amino Acid Receptors in Isolated Hippocampal Neurons. European Journal of Neuroscience, 1990, 2, 461-470.	2.6	52
36	Kava extract ingredients, (+)-methysticin and (±)-kavain inhibit voltage-operated Na+-channels in rat CA1 hippocampal neurons. Neuroscience, 1997, 81, 345-351.	2.3	51

#	Article	IF	CITATIONS
37	Possible functional role of diadenosine polyphosphates: Negative feedback for excitation in hippocampus. Neuroscience, 1994, 58, 235-236.	2.3	49
38	Calcium ions as inward current carriers in mollusc neurones. Comparative Biochemistry and Physiology, 1970, 35, 857-866.	1.1	48
39	The proton-activated inward current of rat sensory neurons includes a calcium component. Neuroscience Letters, 1990, 115, 237-242.	2.1	48
40	Distinct Quantal Features of AMPA and NMDA Synaptic Currents in Hippocampal Neurons: Implication of Glutamate Spillover and Receptor Saturation. Biophysical Journal, 2003, 85, 3375-3387.	0.5	48
41	Surface charge impact in low-magnesium model of seizure in rat hippocampus. Journal of Neurophysiology, 2012, 107, 417-423.	1.8	47
42	Acid sensing ionic channels: Modulation by redox reagents. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 1-6.	4.1	46
43	Conductance of the calcium channel in the membrane of snail neurones Journal of Physiology, 1981, 310, 423-434.	2.9	42
44	P2X3 receptor gating near normal body temperature. Pflugers Archiv European Journal of Physiology, 2008, 456, 339-347.	2.8	42
45	Receptor for protons: First observations on Acid Sensing Ion Channels. Neuropharmacology, 2015, 94, 4-8.	4.1	42
46	Potential-dependent membrane current during the active transport of ions in snail neurones. Journal of Physiology, 1972, 226, 373-392.	2.9	41
47	Asymmetry of the Endogenous Opioid System in the Human Anterior Cingulate: a Putative Molecular Basis for Lateralization of Emotions and Pain. Cerebral Cortex, 2015, 25, 97-108.	2.9	41
48	Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms. Scientific Reports, 2016, 6, 23350.	3.3	41
49	Chapter 19 ATP receptor-mediated component of the excitatory synaptic transmission in the hippocampus. Progress in Brain Research, 1999, 120, 237-249.	1.4	40
50	Ionic currents in the neuroblastoma cell membrane. Neuroscience, 1978, 3, 327-332.	2.3	39
51	Novel Potent Orthosteric Antagonist of ASIC1a Prevents NMDAR-Dependent LTP Induction. Journal of Medicinal Chemistry, 2015, 58, 4449-4461.	6.4	39
52	Intracellular perfusion. Journal of Neuroscience Methods, 1981, 4, 201-210.	2.5	37
53	Calcium currents in snail neurones. Pflugers Archiv European Journal of Physiology, 1974, 348, 95-104.	2.8	36
54	Opioids inhibit purinergic nociceptors in the sensory neurons and fibres of rat via a G protein-dependent mechanism. Neuropharmacology, 2005, 48, 639-647.	4.1	36

#	Article	IF	CITATIONS
55	Are sulfhydryl groups essential for function of the glutamate-operated receptor-ionophore complex?. Neuroscience Letters, 1986, 66, 305-310.	2.1	35
56	Glycine action on receptors in rat hippocampal neurons. Neuroscience Letters, 1989, 99, 131-136.	2.1	35
57	Adenosine-dependent enhancement by methylxanthines of excitatory synaptic transmission in hippocampus of rats. Neuroscience Letters, 1992, 135, 10-12.	2.1	33
58	Ω-conotoxin GVIA potently inhibits the currents mediated by P2X receptors in rat DRG neurons. Brain Research Bulletin, 2001, 54, 507-512.	3.0	33
59	The β subunit increases the ginkgolide B sensitivity of inhibitory glycine receptors. Neuropharmacology, 2005, 49, 945-951.	4.1	32
60	ω-Lsp-IA, a novel modulator of P-type Ca2+ channels. Toxicon, 2007, 50, 993-1004.	1.6	31
61	A1 adenosine receptors differentially regulate the N-methyl-d-aspartate and non-N-methyl-d-aspartate receptor-mediated components of hippocampal excitatory postsynaptic current in a Ca2+/Mg2+-dependent manner. Neuroscience, 1995, 65, 947-953.	2.3	30
62	R56865 and flunarizine as Na+-channel blockers in isolated Purkinje neurons of rat cerebellum. Neuroscience, 1993, 54, 575-585.	2.3	29
63	Hyperforin modulates gating of P-type Ca2+ current in cerebellar Purkinje neurons. Pflugers Archiv European Journal of Physiology, 2000, 440, 427-434.	2.8	29
64	Ginkgolide B preferentially blocks chloride channels formed by heteromeric glycine receptors in hippocampal pyramidal neurons of rat. Brain Research Bulletin, 2004, 63, 309-314.	3.0	29
65	Acid-Sensing Ion Channels: Focus on Physiological and Some Pathological Roles in the Brain. Current Neuropharmacology, 2021, 19, 1570-1589.	2.9	29
66	Intracellular Na+inhibits voltage-dependent N-type Ca2+channels by a G protein Î ² Î ³ subunit-dependent mechanism. Journal of Physiology, 2004, 556, 121-134.	2.9	27
67	Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150431.	4.0	26
68	Heterogeneity of the functional expression of P2X3 and P2X2/3 receptors in the primary nociceptive neurons of rat. Neurochemical Research, 2001, 26, 993-1000.	3.3	25
69	Hippocampal synaptic plasticity induced by excitatory amino acids includes changes in sensitivity to the calcium channel blocker, ω-conotoxin. Neuroscience Letters, 1989, 102, 197-204.	2.1	24
70	Two types of steadyâ€state desensitization of Nâ€methylâ€Dâ€aspartate receptor in isolated hippocampal neurones of rat Journal of Physiology, 1992, 448, 453-472.	2.9	23
71	Capsaicin blocks Ca2+ channels in isolated rat trigeminal and hippocampal neurones. NeuroReport, 1995, 6, 2338-2340.	1.2	23
72	Modulatory action of RFamide-related peptides on acid-sensing ionic channels is pH dependent: the role of arginine. Journal of Neurochemistry, 2004, 91, 252-255.	3.9	23

#	Article	IF	CITATIONS
73	Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics. Frontiers in Cellular Neuroscience, 2015, 9, 187.	3.7	23
74	Protein Kinase C Lambda Mediates Acid-Sensing Ion Channel 1a-Dependent Cortical Synaptic Plasticity and Pain Hypersensitivity. Journal of Neuroscience, 2019, 39, 5773-5793.	3.6	23
75	R56865 as Ca2+-channel blocker in Purkinje neurons of rat: Comparison with flunarizine and nimodipine. Neuroscience, 1993, 54, 587-594.	2.3	22
76	Inhibition of hippocampal LTP by ginkgolide B is mediated by its blocking action on PAF rather than glycine receptors. Neurochemistry International, 2004, 44, 171-177.	3.8	21
77	Intra―and interregional coregulation of opioid genes: broken symmetry in spinal circuits. FASEB Journal, 2017, 31, 1953-1963.	0.5	21
78	Bilirubin enhances the activity of ASIC channels to exacerbate neurotoxicity in neonatal hyperbilirubinemia in mice. Science Translational Medicine, 2020, 12, .	12.4	21
79	The agonists for nociceptors are ubiquitous, but the modulators are specific: P2X receptors in the sensory neurons are modulated by cannabinoids. Pflugers Archiv European Journal of Physiology, 2006, 453, 353-360.	2.8	20
80	Protective cap over CA1 synapses: extrasynaptic glutamate does not reach the postsynaptic density. Brain Research, 2004, 1011, 195-205.	2.2	19
81	G-protein-independent modulation of P-type calcium channels by μ-opioids in Purkinje neurons of rat. Neuroscience Letters, 2010, 480, 106-111.	2.1	19
82	Title is missing!. Neurophysiology, 2002, 34, 155-157.	0.3	18
83	P2X receptors in sensory neurons coâ€cultured with cancer cells exhibit a decrease in opioid sensitivity. European Journal of Neuroscience, 2009, 29, 76-86.	2.6	17
84	Inhibition of protease-activated receptor 1 ameliorates behavioral deficits and restores hippocampal synaptic plasticity in a rat model of status epilepticus. Neuroscience Letters, 2019, 692, 64-68.	2.1	17
85	A modulatory role of ASICs on GABAergic synapses in rat hippocampal cell cultures. Molecular Brain, 2016, 9, 90.	2.6	16
86	A highly potent and selective receptor antagonist from the venom of the Agelenopsis aperta spider. Neuroscience, 1992, 51, 11-18.	2.3	14
87	RFa-related peptides are algogenic: evidence in vitro and in vivo. European Journal of Neuroscience, 2004, 20, 1419-1423.	2.6	14
88	Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus. Epilepsy and Behavior, 2017, 67, 66-69.	1.7	14
89	Outward currents in isolated snail neurones—l. Inactivation kinetics. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1975, 51, 259-263.	0.2	13
90	Changes in the state of the excitatory synaptic system in the hippocampus on prolonged exposure to excitatory amino acids and antagonists. Neuroscience Letters, 1988, 85, 82-88.	2.1	13

#	Article	IF	CITATIONS
91	Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23. Peptides, 2012, 35, 306-310.	2.4	13
92	Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction. Cell Death and Disease, 2015, 6, e1683-e1683.	6.3	13
93	Persistent sodium current properties in hippocampal CA1 pyramidal neurons of young and adult rats. Neuroscience Letters, 2014, 559, 30-33.	2.1	12
94	NMDA receptor-mediated synapses between CA1 neurones. NeuroReport, 1996, 7, 2679-2682.	1.2	11
95	The putative cognitive enhancer KA-672. HCl is an uncompetitive voltage-dependent NMDA receptor antagonist. NeuroReport, 1998, 9, 4193-4197.	1.2	11
96	Modulation of GABAA receptor-mediated currents by phenazepam and its metabolites. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 1-8.	3.0	11
97	Novel Mechanism for Temperature-Independent Transitions in Flexible Molecules: Role of Thermodynamic Fluctuations. Physical Review Letters, 2010, 104, 178105.	7.8	11
98	Persistently enhanced ratio of NMDA and non-NMDA components of rat hippocampal EPSC after block of A1 adenosine receptors at increased. Neuroscience Letters, 1994, 179, 132-136.	2.1	10
99	Peripherally applied neuropeptide SF is equally algogenic in wild type and ASIC3â^'/â^' mice. Neuroscience Research, 2006, 55, 421-425.	1.9	10
100	Outward currents in isolated snail neurones—III. Effect of verapamil. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1975, 51, 269-274.	0.2	9
101	Outward currents in isolated snail neurones—II. Effect of TEA. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1975, 51, 265-268.	0.2	9
102	Desensitization of NMDA receptors does not proceed in the presence of kynurenate. Neuroscience Letters, 1990, 108, 88-92.	2.1	9
103	Trans-ACPD selectively inhibits excitability of hippocampal CA1 neurones. European Journal of Pharmacology, 1992, 212, 305-306.	3.5	9
104	Novel spider toxin slows down the activation kinetics of P-type Ca2+ channels in Purkinje neurons of rat. Toxicology, 2005, 207, 129-136.	4.2	9
105	Glutamate and Î,-rhythm stimulation selectively enhance NMDA component of EPSC in CA1 neurons of young rats. Neuroscience Letters, 1993, 151, 29-32.	2.1	8
106	Methyllycaconitine, α -bungarotoxin and (+)-tubocurarine block fast ATP-gated currents in rat dorsal root ganglion cells. British Journal of Pharmacology, 2004, 142, 1227-1232.	5.4	8
107	Therapeutic time window for the neuroprotective action of MK-801 after decapitation ischemia: hippocampal slice data. Brain Research, 2004, 1017, 92-97.	2.2	8
108	Post-synaptic N-methyl-d-aspartate signalling in hippocampal neurons of rat: spillover increases the impact of each spike in a short burst discharge. Neuroscience Letters, 2004, 361, 60-63.	2.1	8

#	Article	IF	CITATIONS
109	Molecular mechanism for opioid dichotomy: bidirectional effect of μ-opioid receptors on P2X3 receptor currents in rat sensory neurones. Purinergic Signalling, 2015, 11, 171-181.	2.2	8
110	A novel selective NMDA agonist, N-phthalamoyl-L-glutamic acid (PhGA). NeuroReport, 1991, 2, 29-32.	1.2	7
111	337 - Properties of single calcium channels in the neuronal membrane. Bioelectrochemistry, 1980, 7, 195-207.	1.0	6
112	Inhibitions of the GABA-induced currents of rat neurons by the alkaloid isocoryne from the plant Corydalis pseudoadunca. Toxicon, 1990, 28, 727-730.	1.6	6
113	The mechanism gated by external potassium and sodium controls the resting conductance in hippocampal and cortical neurons. Neuroscience, 1999, 92, 1231-1242.	2.3	6
114	New channel blocker BIIA388CL blocks delayed rectifier, but not A-type potassium current in central neurons. Neuropharmacology, 2001, 40, 233-241.	4.1	6
115	Modulation of ATP-induced LTP by cannabinoid receptors in rat hippocampus. Purinergic Signalling, 2012, 8, 705-713.	2.2	6
116	Opioid precursor protein isoform is targeted to the cell nuclei in the human brain. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 246-255.	2.4	6
117	Integration of energy homeostasis and stress by parvocellular neurons in rat hypothalamic paraventricular nucleus. Journal of Physiology, 2020, 598, 1073-1092.	2.9	6
118	Pharmacological Validation of ASIC1a as a Druggable Target for Neuroprotection in Cerebral Ischemia Using an Intravenously Available Small Molecule Inhibitor. Frontiers in Pharmacology, 2022, 13, 849498.	3.5	6
119	Glutamate induces long-term increase in the frequency of single N-methyl-d-aspartate channel openings in hippocampal CA1 neurons examined in situ. Neuroscience, 1993, 54, 557-559.	2.3	5
120	Inhibitory Action Of Ambocarb On Voltage-Operated Sodium Channels In Rat Isolated Hippocampal Pyramidal Neurons. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 46-54.	1.9	5
121	Modulation of GABAA receptor-mediated currents by benzophenone derivatives in isolated rat Purkinje neurones. Neuropharmacology, 2002, 43, 764-777.	4.1	4
122	Adenosine Triphosphate (ATP) as a Neurotransmitter. , 2009, , 115-123.		4
123	Extracellular cAMP inhibits P2X ₃ receptors in rat sensory neurones through G proteinâ€mediated mechanism. Acta Physiologica, 2010, 199, 199-204.	3.8	4
124	The transmembrane gradient of osmotic pressure modifies the kinetics of sodium currents in perfused neurons. Experientia, 1983, 39, 494-495.	1.2	3
125	Blocking action of Nephila clavata spider toxin on ionic currents activated by glutamate and its agonists in isolated hippocampal neurons. Neurophysiology, 1989, 21, 110-116.	0.3	3
126	Electrical responses in hippocampal slices after prolonged global ischemia: effects of neuroprotectors. Brain Research, 2000, 863, 66-70.	2.2	3

#	Article	IF	CITATIONS
127	Title is missing!. Neurophysiology, 2001, 33, 5-10.	0.3	3
128	Preconditioning by motor activity protects rat hippocampal CA1 neurons against prolonged ischemia. Brain Research, 2001, 888, 326-329.	2.2	3
129	ATP-activated ionic conductance in the somatic membrane of mammalian sensory ganglionic neurons. Neurophysiology, 1985, 16, 255-263.	0.3	2
130	Modulatory effects of diadenosine polyphosphates on different types of calcium channels in the rat central neurons. Neurophysiology, 1994, 26, 334-340.	0.3	2
131	Title is missing!. Neurophysiology, 2001, 33, 365-371.	0.3	2
132	Antioxidant-caused changes in the permeability of proton-gated ion channels for sodium and calcium. Neurophysiology, 2006, 38, 158-162.	0.3	2
133	Publisher's Note: Novel Mechanism for Temperature-Independent Transitions in Flexible Molecules: Role of Thermodynamic Fluctuations [Phys. Rev. Lett. 104 , 178105 (2010)]. Physical Review Letters, 2010, 104, .	7.8	2
134	Purinergic Membrane Receptors as Targets for the Effect of Purotoxin 1, a Component of Venom of Spiders from the Geolycosa Genus. Neurophysiology, 2011, 42, 387-391.	0.3	2
135	Is rapid effect of thyroxine on GABAergic IPSCs purely postsynaptic?. Pharmacological Reports, 2012, 64, 1573-1577.	3.3	2
136	ASICs may affect GABAergic synapses. Oncotarget, 2017, 8, 41788-41789.	1.8	2
137	Outward currents in the nerve cell membrane. Bioelectrochemistry, 1976, 3, 319-327.	1.0	1
138	Kinetics of calcium inward current activation. Brain Research Bulletin, 1979, 4, 169-170.	3.0	1
139	FMRFa-Related Endogenous Peptides Affect Proton-Activated Currents in Rat Trigeminal Neurons. Neurophysiology, 2002, 34, 194-194.	0.3	1
140	Oleg Krishtal: Conscious efforts. Nature, 2003, 424, 728-728.	27.8	1
141	Increased temperature and acidosis effectively accelerate the recovery of P2X3 receptors from desensitization. Neurophysiology, 2007, 39, 330-331.	0.3	1
142	Effect of of ATP on Neurons of the Rat Intact Nodose Ganglion. Neurophysiology, 2012, 43, 432-436.	0.3	1
143	Steady-state characteristics of the proton receptor in the somatic membrane of rat sensory neurons. Neurophysiology, 1984, 15, 469-474.	0.3	0
144	Rapid pH changes associated with synaptic transmission in isolated mammalian hippocampal slices. Bulletin of Experimental Biology and Medicine, 1986, 101, 707-710.	0.8	0

#	Article	IF	CITATIONS
145	Interaction between pentobarbital and GABA-activated ionic channels in rat cerebellar neurons. Neurophysiology, 1990, 22, 77-81.	0.3	0
146	Synaptic transmission in slices of rat hippocampus using a modified voltage clamp technique. Neurophysiology, 1992, 23, 544-550.	0.3	0
147	Modulation by diadenosine polyphosphates of synaptic transmission in the hippocampus. Neurophysiology, 1994, 26, 347-349.	0.3	0
148	Modulation of excitatory synaptic transmission by adenosine: Possibility of interaction with Ca-delivering machinery. Neurophysiology, 1995, 26, 26-28.	0.3	0
149	Na+ Influx Inhibits Neuronal Ca2+ Channels. Neurophysiology, 2002, 34, 182-183.	0.3	0
150	Title is missing!. Neurophysiology, 2002, 34, 102-105.	0.3	0
151	pH Receptors: Peptides and Nociception. Neurophysiology, 2003, 35, 208-216.	0.3	0
152	Modulation of P2X3Receptor-Mediated ATP-Operated Currents by Opioids. Neurophysiology, 2004, 36, 80-81.	0.3	0
153	Effects of RFa Peptides on the Background and Mechanical Stimulation-Elicited Activity of Single Afferents of the Rat Skin in vitro. Neurophysiology, 2004, 36, 90.	0.3	0
154	Responses Evoked in Afferent Fibers by Mechanostimulation of the Skin in vitro: Modulation by RFa-Like Peptides. Neurophysiology, 2005, 37, 120-126.	0.3	0
155	Algogenic Peripheral Effects of RFa Peptides. Neurophysiology, 2005, 37, 303-307.	0.3	0
156	Modulation by redox reagents of ATP-activated currents in neurons of the rat nodose ganglion. Neurophysiology, 2006, 38, 95-100.	0.3	0
157	Mecamylamine inhibits seizure-like activity in CA1-CA3 hippocampus through antagonism to nicotinic receptors. PLoS ONE, 2021, 16, e0240074.	2.5	0
158	P2X3-Receptor Desensitization as an Alternative Mechanism of Analgesia. International Journal of Physiology and Pathophysiology, 2013, 4, 353-360.	0.1	0