Chuanshan Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8780058/publications.pdf Version: 2024-02-01

CHIIANSHAN TIAN

#	Article	IF	CITATIONS
1	Gate-Variable Optical Transitions in Graphene. Science, 2008, 320, 206-209.	12.6	1,433
2	Characterization of Vibrational Resonances of Water-Vapor Interfaces by Phase-Sensitive Sum-Frequency Spectroscopy. Physical Review Letters, 2008, 100, 096102.	7.8	288
3	Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15148-15153.	7.1	280
4	Unveiling Microscopic Structures of Charged Water Interfaces by Surface-Specific Vibrational Spectroscopy. Physical Review Letters, 2016, 116, 016101.	7.8	244
5	Structures and Charging of α-Alumina (0001)/Water Interfaces Studied by Sum-Frequency Vibrational Spectroscopy. Journal of the American Chemical Society, 2008, 130, 7686-7694.	13.7	190
6	Isotopic Dilution Study of the Water/Vapor Interface by Phase-Sensitive Sum-Frequency Vibrational Spectroscopy. Journal of the American Chemical Society, 2009, 131, 2790-2791.	13.7	185
7	Interfacial Structures of Acidic and Basic Aqueous Solutions. Journal of the American Chemical Society, 2008, 130, 13033-13039.	13.7	183
8	Recent progress on sum-frequency spectroscopy. Surface Science Reports, 2014, 69, 105-131.	7.2	158
9	Sum-frequency vibrational spectroscopic studies of water/vapor interfaces. Chemical Physics Letters, 2009, 470, 1-6.	2.6	141
10	Surface Propensities of Atmospherically Relevant Ions in Salt Solutions Revealed by Phase-Sensitive Sum Frequency Vibrational Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 1946-1949.	4.6	116
11	Body-Centered-Cubic Ni and Its Magnetic Properties. Physical Review Letters, 2005, 94, 137210.	7.8	114
12	Magnetocrystalline Anisotropy in Permalloy Revisited. Physical Review Letters, 2006, 97, 067203.	7.8	91
13	Mechanism of Electric Power Generation from Ionic Droplet Motion on Polymer Supported Graphene. Journal of the American Chemical Society, 2018, 140, 13746-13752.	13.7	87
14	Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. Nature Communications, 2019, 10, 3127.	12.8	69
15	Phase reference in phase-sensitive sum-frequency vibrational spectroscopy. Journal of Chemical Physics, 2016, 144, 244711.	3.0	64
16	Effect of pH on the Water/α-Al ₂ O ₃ (11Ì02) Interface Structure Studied by Sum-Frequency Vibrational Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 13887-13893.	3.1	56
17	Sum-Frequency Spectroscopic Study of Langmuir Monolayers of Lipids Having Oppositely Charged Headgroups. Langmuir, 2010, 26, 18266-18272.	3.5	54
18	Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy. Nano Letters, 2015, 15, 6501-6505.	9.1	39

CHUANSHAN TIAN

#	Article	IF	CITATIONS
19	Surface sum-frequency vibrational spectroscopy of nonpolar media. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5883-5887.	7.1	38
20	Surface pH and Ion Affinity at the Alcohol-Monolayer/Water Interface Studied by Sum-Frequency Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 15224-15229.	3.1	37
21	Surface Structure of Protonated R-Sapphire (11Ì02) Studied by Sum-Frequency Vibrational Spectroscopy. Journal of the American Chemical Society, 2011, 133, 3846-3853.	13.7	36
22	Magnetic properties of Co–Pt alloy nanowire arrays in anodic alumina templates. Journal of Magnetism and Magnetic Materials, 2006, 300, 471-478.	2.3	34
23	Nanoporous silica-water interfaces studied by sum-frequency vibrational spectroscopy. Journal of Chemical Physics, 2009, 130, 154702.	3.0	34
24	Phase-sensitive sum frequency vibrational spectroscopic study of air/water interfaces: H2O, D2O, and diluted isotopic mixtures. Journal of Chemical Physics, 2019, 150, 144701.	3.0	32
25	Comment on "Vibrational Response of Hydrogen-Bonded Interfacial Water is Dominated by Intramolecular Coupling― Physical Review Letters, 2008, 101, 139401; author reply 139402.	7.8	29
26	Structure of the Submonolayer of Ethanol Adsorption on a Vapor/Fused Silica Interface Studied with Sum Frequency Vibrational Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 4573-4580.	2.5	29
27	Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. Light: Science and Applications, 2021, 10, 53.	16.6	29
28	Active spintronic-metasurface terahertz emitters with tunable chirality. Advanced Photonics, 2021, 3, .	11.8	25
29	Magnetic ordering and anisotropy of epitaxially grownFexCu1â~'xalloy onGaAs(001). Physical Review B, 2004, 70, .	3.2	24
30	Theoretical analysis and simulation of pulsed laser heating at interface. Journal of Applied Physics, 2018, 123, .	2.5	22
31	Stabilization of Hydroxide Ions at the Interface of a Hydrophobic Monolayer on Water via Reduced Proton Transfer. Physical Review Letters, 2020, 125, 156803.	7.8	21
32	Layer-selective spectroscopy ofFeâ^•GaAs(001): Influence of the interface on the magnetic properties. Physical Review B, 2005, 72, .	3.2	18
33	Mapping Dynamical Magnetic Responses of Ultrathin Micron-Size Superconducting Films Using Nitrogen-Vacancy Centers in Diamond. Nano Letters, 2019, 19, 5697-5702.	9.1	18
34	Nucleation and dissociation of methane clathrate embryo at the gas–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23410-23415.	7.1	18
35	Long lived photoexcitation dynamics in π-conjugated polymer and fullerene blended films. Organic Electronics, 2013, 14, 2058-2064.	2.6	16
36	Enhanced light-matter interactions in graphene-covered dielectric magnetic mirrors. Optics Express, 2017, 25, 30754.	3.4	15

CHUANSHAN TIAN

#	Article Measurement of the thickness-dependent magnetic anisotropy of mml:math	IF	CITATIONS
37	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvariant="normal">Co<mml:mo>â^•</mml:mo><mml:mi mathvariant="normal">Ga<mml:mi mathvariant="normal">As<mml:mrow><mml:mo>(</mml:mo><mml:mn>001</mml:mn><mml:mo>)<</mml:mo></mml:mrow></mml:mi </mml:mi </mml:mi </mml:mrow>	3.2 /mml:mo:	13 ⊳
38	Physical Review B, 2008, 77, . Absence of detectable MOKE signals from spin Hall effect in metals. Applied Physics Letters, 2017, 110, 042401.	3.3	13
39	Coercivity and magnetization reversal mechanism in ferromagnet/antiferromagnet bilayers: Correlation with microstructure of ferromagnetic layers. Physical Review B, 2005, 71, .	3.2	12
40	Capping effects of Au on Fe/GaAs(001) studied by magneto-optical Kerr effect. Thin Solid Films, 2007, 515, 7290-7293.	1.8	12
41	Spatially homogeneous few-cycle compression of Yb lasers via all-solid-state free-space soliton management. Optics Express, 2022, 30, 2918.	3.4	12
42	Magnetization profile at the Fe/GaAs(001)-4×6 interface. Physica B: Condensed Matter, 2004, 345, 177-180.	2.7	11
43	Response to "Comment on †Phase reference in phase-sensitive sum-frequency vibrational spectroscopyâ€â€™ [J. Chem. Phys. 145 , 167101 (2016)]. Journal of Chemical Physics, 2016, 145, 1671	02.0	11
44	Response to "Comment on â€~Phase-sensitive sum frequency vibrational spectroscopic study of air/water interfaces: H2O, D2O, and diluted isotopic mixtures'―[J. Chem. Phys. 152, 237101 (2020)]. Journal of Chemical Physics, 2020, 152, 237102.	3.0	11
45	Study of Thermal Expansion Coefficient of Graphene via Raman Microâ€&pectroscopy: Revisited. Small, 2021, 17, e2006146.	10.0	7
46	Magnetic anisotropy tuned by interfacial engineering. Applied Physics Letters, 2009, 95, .	3.3	6
47	Interface magnetization profiling by x-ray magnetometry of marker impurities on Feâ^•GaAs(001)-(4×6). Applied Physics Letters, 2005, 87, 042506.	3.3	5
48	Effect of Mn overlayer on spin reorientation transition at Ni/Cu(001). Journal of Magnetism and Magnetic Materials, 2005, 286, 497-500.	2.3	3
49	Magnetism and magnetic anisotropy of NixPd1â°'x alloy. Journal of Magnetism and Magnetic Materials, 2007, 310, 1804-1806.	2.3	3
50	Sharing of Na ⁺ by Three â^'COO [–] Groups at Deprotonated Carboxyl-Terminated Self-Assembled Monolayer-Charged Aqueous Interface. Journal of Physical Chemistry C, 2018, 122, 9111-9116.	3.1	3
51	Correlation between spin reorientation transition and Curie temperature ofNixPd1â^xalloy on Cu(001). Physical Review B, 2009, 79, .	3.2	2
52	Morphology of monolayer Cu _{<i>x</i>} Au _{1 â^'<i>x</i>} on Cu(001). Journal of Physics Condensed Matter, 2010, 22, 395007.	1.8	1
53	Enhancement of femtosecond surface nonlinear optical signals with spatiotemporal focusing. Optics Letters, 2019, 44, 3921.	3.3	1
54	Exchange biasing and coercivity enhancement in CoCr/FeMn bilayers with granular ferromagnet. Journal of Magnetism and Magnetic Materials, 2005, 286, 253-257.	2.3	0

#	Article	IF	CITATIONS
55	STUDY OF WATER INTERFACES WITH PHASE-SENSITIVE SUM FREQUENCY VIBRATIONAL SPECTROSCOPY. Advances in Multi-photon Processes and Spectroscopy, 2014, , 163-193.	0.6	Ο
56	Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy. , 2016, , .		0
57	Surface Tension and Electrostriction in a Suspended Bridge of Dielectric Liquid. Chinese Physics Letters, 2018, 35, 106801.	3.3	0

58 ç"²çf⋅æ°´å•̂物æˆæ,过程çš"实验ç"究进展(特é,€ï¼‰. Guangzi Xuebao/Acta Photonica Sinica, 20219.50, 0850205.

59	Self-Suppression of the Giant Coherent Anti-Stokes Raman Scattering Background for Detection of Buried Interfaces with Submonolayer Sensitivity. Journal of Physical Chemistry Letters, 2022, , 1465-1472.	4.6	0	
----	--	-----	---	--