Christelle Hureau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8779007/publications.pdf

Version: 2024-02-01

53794 53230 7,832 130 45 85 citations h-index g-index papers 143 143 143 7162 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biology, 2018, 14, 450-464.	9.0	1,411
2	Bioinorganic chemistry of copper and zinc ions coordinated to amyloid- \hat{l}^2 peptide. Dalton Transactions, 2009, , 1080-1094.	3.3	464
3	Role of Metal Ions in the Self-assembly of the Alzheimer's Amyloid-β Peptide. Inorganic Chemistry, 2013, 52, 12193-12206.	4.0	296
4	$\hat{Al^2}$ -mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer's disease. Biochimie, 2009, 91, 1212-1217.	2.6	232
5	Metal lons and Intrinsically Disordered Proteins and Peptides: From Cu/Zn Amyloid- \hat{l}^2 to General Principles. Accounts of Chemical Research, 2014, 47, 2252-2259.	15.6	221
6	Iron(II) Binding to Amyloid-β, the Alzheimer's Peptide. Inorganic Chemistry, 2011, 50, 9024-9030.	4.0	177
7	Pulse EPR Spectroscopy Reveals the Coordination Sphere of Copper(II) Ions in the 1–16 Amyloidâ€Î² Peptide: A Key Role of the First Two Nâ€Terminus Residues. Angewandte Chemie - International Edition, 2009, 48, 9273-9276.	13.8	176
8	The benzazole scaffold: a SWAT to combat Alzheimer's disease. Chemical Society Reviews, 2013, 42, 7747.	38.1	161
9	Coordination of redox active metal ions to the amyloid precursor protein and to amyloid- \hat{l}^2 peptides involved in Alzheimer disease. Part 1: An overview. Coordination Chemistry Reviews, 2012, 256, 2164-2174.	18.8	149
10	Cu(II) Affinity for the Alzheimer's Peptide: Tyrosine Fluorescence Studies Revisited. Analytical Chemistry, 2013, 85, 1501-1508.	6.5	148
11	Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 2: Dependence of Cu(II) binding sites with Aβ sequences. Coordination Chemistry Reviews, 2012, 256, 2175-2187.	18.8	129
12	Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coordination Chemistry Reviews, 2018, 371, 38-55.	18.8	120
13	Deprotonation of the Asp1Ala2 Peptide Bond Induces Modification of the Dynamic Copper(II) Environment in the Amyloidâ€Î² Peptide near Physiological pH. Angewandte Chemie - International Edition, 2009, 48, 9522-9525.	13.8	118
14	Importance of dynamical processes in the coordination chemistry and redox conversion of copper amyloid- \hat{l}^2 complexes. Journal of Biological Inorganic Chemistry, 2009, 14, 995-1000.	2.6	116
15	Xâ€ray and Solution Structures of Cu ^{II} GHK and Cu ^{II} DAHK Complexes: Influence on Their Redox Properties. Chemistry - A European Journal, 2011, 17, 10151-10160.	3.3	115
16	Synthesis, Structure, and Characterization of New Mononuclear Mn(II) Complexes. Electrochemical Conversion into New Oxo-Bridged Mn2(III,IV) Complexes. Role of Chloride Ions. Inorganic Chemistry, 2005, 44, 3669-3683.	4.0	110
17	Electrochemical and homogeneous electron transfers to the Alzheimer amyloid- \hat{l}^2 copper complex follow a preorganization mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17113-17118.	7.1	108
18	The Catalytically Active Copperâ€Amyloidâ€Beta State: Coordination Site Responsible for Reactive Oxygen Species Production. Angewandte Chemie - International Edition, 2013, 52, 11110-11113.	13.8	105

#	Article	IF	Citations
19	Identification of key structural features of the elusive Cu–Aβ complex that generates ROS in Alzheimer's disease. Chemical Science, 2017, 8, 5107-5118.	7.4	104
20	Nâ€Terminal Cuâ€Binding Motifs (Xxxâ€Zzzâ€His, Xxxâ€His) and Their Derivatives: Chemistry, Biology and Medicinal Applications. Chemistry - A European Journal, 2018, 24, 8029-8041.	3.3	99
21	Thermodynamic study of Cu2+ binding to the DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine. Journal of Biological Inorganic Chemistry, 2012, 17, 37-47.	2.6	97
22	Free Superoxide is an Intermediate in the Production of H ₂ O ₂ by Copper(I)â€Aβ Peptide and O ₂ . Angewandte Chemie - International Edition, 2016, 55, 1085-1089.	13.8	95
23	Bioinspired functional mimics of the manganese catalases. Coordination Chemistry Reviews, 2012, 256, 1229-1245.	18.8	93
24	A Bioinorganic View of Alzheimer's Disease: When Misplaced Metal Ions (Re)direct the Electrons to the Wrong Target. Chemistry - A European Journal, 2012, 18, 15910-15920.	3.3	84
25	Methods and techniques to study the bioinorganic chemistry of metal–peptide complexes linked to neurodegenerative diseases. Coordination Chemistry Reviews, 2012, 256, 2381-2396.	18.8	77
26	Copper(II) Coordination to Amyloidâ€Î²: Murine versus Human Peptide. Angewandte Chemie - International Edition, 2011, 50, 901-905.	13.8	74
27	Zinc(II) Binding Site to the Amyloid-β Peptide: Insights from Spectroscopic Studies with a Wide Series of Modified Peptides. Inorganic Chemistry, 2016, 55, 10499-10509.	4.0	74
28	pH-Dependent Cu(II) Coordination to Amyloid- \hat{l}^2 Peptide: Impact of Sequence Alterations, Including the H6R and D7N Familial Mutations Inorganic Chemistry, 2011, 50, 11192-11201.	4.0	73
29	Reevaluation of Copper(I) Affinity for Amyloidâ€Î² Peptides by Competition with Ferrozine—An Unusual Copper(I) Indicator. Chemistry - A European Journal, 2012, 18, 1161-1167.	3.3	73
30	Rapid Exchange of Metal between Zn ₇ –Metallothionein-3 and Amyloid-β Peptide Promotes Amyloid-Related Structural Changes. Biochemistry, 2012, 51, 1697-1706.	2.5	68
31	Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level. Dalton Transactions, 2017, 46, 12750-12759.	3.3	68
32	Modeling the Cu ⁺ Binding in the 1â^'16 Region of the Amyloid-β Peptide Involved in Alzheimer's Disease. Journal of Physical Chemistry B, 2010, 114, 15119-15133.	2.6	63
33	Copper-Targeting Approaches in Alzheimer's Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorganic Chemistry, 2019, 58, 13509-13527.	4.0	61
34	Zn impacts Cu coordination to amyloid- \hat{l}^2 , the Alzheimer's peptide, but not the ROS production and the associated cell toxicity. Chemical Communications, 2013, 49, 1214.	4.1	58
35	Pt(ii) compounds interplay with Cu(ii) and Zn(ii) coordination to the amyloid- \hat{l}^2 peptide has metal specific consequences on deleterious processes associated to Alzheimer's disease. Chemical Communications, 2013, 49, 2130.	4.1	58
36	Coordination complexes and biomolecules: A wise wedding for catalysis upgrade. Coordination Chemistry Reviews, 2016, 308, 445-459.	18.8	58

#	Article	IF	CITATIONS
37	Chemistry of mammalian metallothioneins and their interaction with amyloidogenic peptides and proteins. Chemical Society Reviews, 2017, 46, 7683-7693.	38.1	57
38	Copper and Heme-Mediated Abeta Toxicity: Redox Chemistry, Abeta Oxidations and Anti-ROS Compounds. Current Topics in Medicinal Chemistry, 2013, 12, 2573-2595.	2.1	56
39	A spectroscopic and voltammetric study of the pH-dependent Cu(II) coordination to the peptide GGGTH: relevance to the fifth Cu(II) site in the prion protein. Journal of Biological Inorganic Chemistry, 2006, 11, 735-744.	2.6	55
40	Metal-catalyzed oxidation of ${\rm A\hat{l}^2}$ and the resulting reorganization of Cu binding sites promote ROS production. Metallomics, 2016, 8, 1081-1089.	2.4	55
41	Oriented Immobilization of a Fully Active Monolayer of Histidine‶agged Recombinant Laccase on Modified Gold Electrodes. Chemistry - A European Journal, 2008, 14, 7186-7192.	3.3	54
42	Identifying, By First-Principles Simulations, Cu[Amyloid-β] Species Making Fenton-Type Reactions in Alzheimer's Disease. Journal of Physical Chemistry B, 2013, 117, 16455-16467.	2.6	51
43	Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation. Energy and Environmental Science, 2010, 3, 924.	30.8	50
44	Two Functions, One Molecule: A Metalâ€Binding and a Targeting Moiety to Combat Alzheimer's Disease. ChemBioChem, 2010, 11, 950-953.	2.6	47
45	The role of metal ions in amyloid formation: general principles from model peptides. Metallomics, 2013, 5, 183.	2.4	47
46	Ascorbate Oxidation by $Cu(Amyloid-\hat{l}^2)$ Complexes: Determination of the Intrinsic Rate as a Function of Alterations in the Peptide Sequence Revealing Key Residues for Reactive Oxygen Species Production. Analytical Chemistry, 2018, 90, 5909-5915.	6.5	44
47	Synthesis, Structure, and Characterisation of a New Phenolato-Bridged Manganese Complex[Mn2(mL)2]2+: Chemical and Electrochemical Access to a New Mono-μ-Oxo Dimanganese Core Unit. Chemistry - A European Journal, 2004, 10, 1998-2010.	3.3	42
48	Copper Coordination to Native N-Terminally Modified versus Full-Length Amyloid- \hat{l}^2 : Second-Sphere Effects Determine the Species Present at Physiological pH. Inorganic Chemistry, 2012, 51, 12988-13000.	4.0	40
49	Oxidative stress as a biomarker for Alzheimer's disease. Biomarkers in Medicine, 2018, 12, 201-203.	1.4	40
50	Interference of a new cyclometallated Pt compound with Cu binding to amyloid- \hat{l}^2 peptide. Dalton Transactions, 2012, 41, 6404.	3.3	38
51	Copper(I/II), α/βâ€Synuclein and Amyloidâ€Î²: Menage à Trois?. ChemBioChem, 2015, 16, 2319-2328.	2.6	38
52	Modeling Copper Binding to the Amyloid- \hat{l}^2 Peptide at Different pH: Toward a Molecular Mechanism for Cu Reduction. Journal of Physical Chemistry B, 2012, 116, 11899-11910.	2.6	37
53	Link between Affinity and Cu(II) Binding Sites to Amyloid-β Peptides Evaluated by a New Water-Soluble UV–Visible Ratiometric Dye with a Moderate Cu(II) Affinity. Analytical Chemistry, 2017, 89, 2155-2162.	6.5	37
54	Use of a new water-soluble Zn sensor to determine Zn affinity for the amyloid- \hat{l}^2 peptide and relevant mutants. Metallomics, 2014, 6, 1220.	2.4	36

#	Article	IF	CITATIONS
55	Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorganic Chemistry, 2015, 54, 4744-4751.	4.0	35
56	Copper(<scp>i</scp>) targeting in the Alzheimer's disease context: a first example using the biocompatible PTA ligand. Metallomics, 2015, 7, 1229-1232.	2.4	35
57	How Zn can impede Cu detoxification by chelating agents in Alzheimer's disease: a proof-of-concept study. Dalton Transactions, 2016, 45, 15671-15678.	3.3	33
58	Cu ^{II} Binding to Various Forms of Amyloidâ€Î² Peptides: Are They Friends or Foes?. European Journal of Inorganic Chemistry, 2018, 2018, 7-15.	2.0	33
59	A new water-soluble Cu(II) chelator that retrieves Cu from Cu(amyloid- \hat{l}^2) species, stops associated ROS production and prevents Cu(II) $\hat{a} \in \hat{l}^2$ aggregation. Journal of Inorganic Biochemistry, 2012, 117, 322-325.	3.5	32
60	Is ascorbate Dr Jekyll or Mr Hyde in the $Cu(A\hat{l}^2)$ mediated oxidative stress linked to Alzheimer's disease?. Dalton Transactions, 2016, 45, 12627-12631.	3.3	32
61	Controlled Redox Conversion of New X-ray-Characterized Mono- and Dinuclear Heptacoordinated Mn(II) Complexes into Di-ν-oxo-dimanganese Core Complexes. Inorganic Chemistry, 2004, 43, 4415-4426.	4.0	31
62	Characterizations of Chloro and Aqua Mn(II) Mononuclear Complexes with Amino-Pyridine Ligands. Comparison of Their Electrochemical Properties With Those of Fe(II) Counterparts. Inorganic Chemistry, 2008, 47, 11783-11797.	4.0	31
63	Syntheses, X-ray Structures, Solid State High-Field Electron Paramagnetic Resonance, and Density-Functional Theory Investigations on Chloro and Aqua MnII Mononuclear Complexes with Amino-Pyridine Pentadentate Ligands. Inorganic Chemistry, 2008, 47, 9238-9247.	4.0	31
64	pH-Dependent Structures of the Manganese Binding Sites in Oxalate Decarboxylase as Revealed by High-Field Electron Paramagnetic Resonance. Journal of Physical Chemistry B, 2009, 113, 9016-9025.	2.6	31
65	Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. Journal of Alzheimer's Disease, 2021, 83, 23-41.	2.6	31
66	Synthesis, Structure and Characterisation of New Phenolato-Bridged Manganese Complexes [L2Mn2]2+ \hat{a} Formation by Ligand Oxidation in LaH [LaH = N-(2-hydroxybenzyl)-N,N \hat{a} bis (2-pyridylmethyl)ethane-1,2-diamine]. European Journal of Inorganic Chemistry, 2002, 2002, 2710-2719.	2.0	30
67	Folding of the prion peptide GGCTHSQW around the copper(II) ion: identifying the oxygen donor ligand at neutral pH and probing the proximity of the tryptophan residue to the copper ion. Journal of Biological Inorganic Chemistry, 2008, 13, 1055-1064.	2.6	29
68	Inhibition of Cuâ€Amyloidâ€Î² by using Bifunctional Peptides with βâ€Sheet Breaker and Chelator Moieties. Chemistry - A European Journal, 2012, 18, 4836-4839.	3.3	29
69	A new mononuclear manganese(III) complex of an unsymmetrical hexadentate N3O3 ligand exhibiting superoxide dismutase and catalase-like activity: synthesis, characterization, properties and kinetics studies. Journal of Inorganic Biochemistry, 2015, 146, 69-76.	3.5	28
70	Concept for Simultaneous and Specific in Situ Monitoring of Amyloid Oligomers and Fibrils via Förster Resonance Energy Transfer. Analytical Chemistry, 2014, 86, 11877-11882.	6.5	26
71	Synthesis, Characterization, and Catalase Activity of a Water-Soluble diMnIIIComplex of a Sulphonato-Substituted Schiff Base Ligand: An Efficient Catalyst for H2O2Disproportionation. Inorganic Chemistry, 2011, 50, 8973-8983.	4.0	25
72	A Waterâ€Soluble Peptoid Chelator that Can Remove Cu ²⁺ from Amyloidâ€Î² Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angewandte Chemie - International Edition, 2021, 60, 24588-24597.	13.8	25

#	Article	IF	CITATIONS
73	Direct Measurement of the Hyperfine andg-Tensors of a Mn(III)â^'Mn(IV) Complex in Polycrystalline and Frozen Solution Samples by High-Field EPR. Journal of the American Chemical Society, 2003, 125, 11637-11645.	13.7	23
74	Zinc(II) modulates specifically amyloid formation and structure in model peptides. Journal of Biological Inorganic Chemistry, 2011, 16, 333-340.	2.6	23
75	Dynamics of Zn ^{II} Binding as a Key Feature in the Formation of Amyloid Fibrils by AÎ ² 11-28. Inorganic Chemistry, 2012, 51, 701-708.	4.0	23
76	Cu(II) Binding to the Peptide Ala-His-His, a Chimera of the Canonical Cu(II)-Binding Motifs Xxx-His and Xxx-Zzz-His. Inorganic Chemistry, 2017, 56, 14870-14879.	4.0	23
77	Metal ions in neurodegenerative diseases. Coordination Chemistry Reviews, 2012, 256, 2127-2128.	18.8	22
78	Insights into Second-Sphere Effects on Redox Potentials, Spectroscopic Properties, and Superoxide Dismutase Activity of Manganese Complexes with Schiff-Base Ligands. ACS Omega, 2019, 4, 48-57.	3.5	22
79	Synthesis, characterization and activity of imidazolate-bridged and Schiff-base dinuclear complexes as models of Cu,Zn-SOD. A comparative study. Journal of Inorganic Biochemistry, 2016, 163, 162-175.	3.5	21
80	A Trishistidine Pseudopeptide with Ability to Remove Both Cu ^Ι and Cu ^{ΙΙ} from the Amyloidâ€Î² Peptide and to Stop the Associated ROS Formation. Chemistry - A European Journal, 2017, 23, 17078-17088.	3.3	21
81	(Bio)chemical Strategies To Modulate Amyloid- \hat{l}^2 Self-Assembly. ACS Chemical Neuroscience, 2019, 10, 3366-3374.	3.5	21
82	Impact of Nâ€Truncated Aβ Peptides on Cu―and Cu(Aβ)â€Generated ROS: Cu ^I Matters!. Chemistr A European Journal, 2021, 27, 1777-1786.	у _{з.3}	21
83	Platinoid complexes to target monomeric disordered peptides: a forthcoming solution against amyloid diseases?. Dalton Transactions, 2014, 43, 4233.	3.3	20
84	Synthesis, Structure and Characterisation of a New Trinuclear Di-Î ¹ / ₄ -phenolato-Î ¹ / ₄ -carboxylato MnIIIMnIII Complex with a Bulky Pentadentate Ligand: Chemical Access to Mononuclear MnIV-OH Entities. European Journal of Inorganic Chemistry, 2005, 2005, 4808-4817.	2.0	19
85	N ₄ â€Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copperâ€Amyloidâ€Î² _{1–16} . Chemistry - A European Journal, 2018, 24, 7825-7829.	3.3	19
86	A Metallo Proâ€Drug to Target Cu ^{II} in the Context of Alzheimer's Disease. Chemistry - A European Journal, 2018, 24, 5095-5099.	3.3	19
87	Free Superoxide is an Intermediate in the Production of H ₂ O ₂ by Copper(I)â€Aβ Peptide and O ₂ . Angewandte Chemie, 2016, 128, 1097-1101.	2.0	18
88	Kinetics Are Crucial When Targeting Copper Ions to Fight Alzheimer's Disease: An Illustration with Azamacrocyclic Ligands. Chemistry - A European Journal, 2018, 24, 8447-8452.	3.3	18
89	Chemical access to the mononuclear Mn(III) $[(mL)Mn(OMe)]+$ complex $(mLH=N,Na\in^2-bis-(2-pyridylmethyl)-N-(2-hydroxybenzyl)-Na\in^2-methyl-ethane-1,2-diamine)$ and electrochemical oxidation to the Mn(IV) $[(mL)Mn(OMe)]2+$ species. Inorganica Chimica Acta, 2006, 359, 339-345.	2.4	17
90	Dimerization, redox properties and antioxidant activity of two manganese(III) complexes of difluoro-and dichloro-substituted Schiff-base ligands. Journal of Inorganic Biochemistry, 2017, 167, 49-59.	3.5	17

#	Article	IF	CITATIONS
91	Chemical and Electrochemical Behaviours of a New Phenolato-Bridged Complex [(L)MnIIMnII(L)]2+. Pathways to Mononuclear Chlorido [(L)MnII/III/IVCl]0/1/2+ and Dinuclear Mono-µ-Oxido [(L)MnIII(µ-O)MnIII/IV(L)]2+/3+ Species. European Journal of Inorganic Chemistry, 2006, 2006, 4324-4337.	2.0	14
92	Measurement of Interpeptidic Cu(II) Exchange Rate Constants by Static Fluorescence Quenching of Tryptophan. Inorganic Chemistry, 2018, 57, 4791-4794.	4.0	14
93	Triggering Cu-coordination change in Cu(<scp>ii</scp>)-Ala-His-His by external ligands. Chemical Communications, 2019, 55, 8110-8113.	4.1	14
94	Reproducibility Problems of Amyloid- \hat{l}^2 Self-Assembly and How to Deal With Them. Frontiers in Chemistry, 2020, 8, 611227.	3.6	13
95	Metal-Binding to Amyloid- \hat{l}^2 Peptide: Coordination, Aggregation, and Reactive Oxygen Species Production. , 2017, , 265-281.		12
96	Real-time evolution of $\hat{Al^2}$ 40 metal-catalyzed oxidation reveals Asp1 as the main target and a dependence on metal binding site. Inorganica Chimica Acta, 2018, 472, 111-118.	2.4	12
97	The Aggregation Pattern of Al̂² _{1–40} is Altered by the Presence of <i>N</i> â€√runcated Al̂² _{4–40} and/or Cu ^{II} in a Similar Way through Ionic Interactions. Chemistry - A European Journal, 2021, 27, 2798-2809.	3.3	12
98	Trinuclear Manganese Complexes of Unsymmetrical Polypodal Diamino N ₃ O ₃ Ligands with an Unusual [Mn ₃ ($i\frac{1}{4}$ -OR) ₄] ⁵⁺ Triangular Core: Synthesis, Characterization, and Catalase Activity. Inorganic Chemistry, 2014, 53, 2545-2553.	4.0	11
99	Biomimetic Cu, Zn and Cu2 complexes inserted in mesoporous silica as catalysts for superoxide dismutation. Microporous and Mesoporous Materials, 2019, 279, 133-141.	4.4	11
100	Preparation, characterization and activity of CuZn and Cu2 superoxide dismutase mimics encapsulated in mesoporous silica. Journal of Inorganic Biochemistry, 2020, 207, 111050.	3.5	11
101	Influence of the Electrochemical Conversion of [(LH)MnIICl2] into [(L)MnIIICl]+on the Protonic State of a Phenol-Containing Ligand. Inorganic Chemistry, 2006, 45, 2373-2375.	4.0	10
102	Insights into the Mechanisms of Amyloid Formation of Zn ^{II} -Ab11-28: pH-Dependent Zinc Coordination and Overall Charge as Key Parameters for Kinetics and the Structure of Zn ^{II} -Ab11-28 Aggregates. Inorganic Chemistry, 2012, 51, 7897-7902.	4.0	10
103	An easy-to-implement combinatorial approach involving an activity-based assay for the discovery of a peptidyl copper complex mimicking superoxide dismutase. Chemical Communications, 2020, 56, 399-402.	4.1	10
104	Keggin-type polyoxometalates as Cu(<scp>ii</scp>) chelators in the context of Alzheimer's disease. Chemical Communications, 2022, 58, 2367-2370.	4.1	10
105	The aroylhydrazone INHHQ prevents memory impairment induced by Alzheimer's-linked amyloid-β oligomers in mice. Behavioural Pharmacology, 2020, 31, 738-747.	1.7	9
106	Synthesis, characterization, and biological activity of novel 3 <i>d</i> metal coordination compounds with 2â€acetylpyridine <i>N</i> ⁴ â€allylâ€ <i>S</i> â€methylisothiosemicarbazone. Applied Organometallic Chemistry, 2021, 35, e6172.	3.5	8
107	A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid- \hat{l}^2 Peptides. PLoS ONE, 2016, 11, e0161209.	2.5	8
108	Tuning the MnII2/MnIII2 redox cycle of a phenoxo-bridged diMn catalase mimic with terminal carboxylate donors. Journal of Inorganic Biochemistry, 2018, 182, 29-36.	3.5	7

#	Article	IF	CITATIONS
109	Role of PTA in the prevention of Cu(amyloid- \hat{l}^2) induced ROS formation and amyloid- \hat{l}^2 oligomerisation in the presence of Zn. Metallomics, 2019, 11, 1154-1161.	2.4	7
110	Unexpected Trends in Copper Removal from ${\sf A}^{\hat{1}^2}$ Peptide: When Less Ligand Is Better and Zn Helps. Inorganic Chemistry, 2021, 60, 1248-1256.	4.0	7
111	Functional modeling of the MnCAT active site with a dimanganese(III) complex of an unsymmetrical polydentate N 3 O 3 ligand. Journal of Inorganic Biochemistry, 2018, 186, 10-16.	3.5	6
112	Concentrationâ€Dependent Interactions of Amphiphilic PiB Derivative Metal Complexes with Amyloid Peptides Aβ and Amylin**. Chemistry - A European Journal, 2021, 27, 2009-2020.	3.3	6
113	Hybrid Bis-Histidine Phenanthroline-Based Ligands to Lessen Aβ-Bound Cu ROS Production: An Illustration of Cu(I) Significance. Molecules, 2021, 26, 7630.	3.8	6
114	Synthesis, Structure, and Biologic Activity of Some Copper, Nickel, Cobalt, and Zinc Complexes with 2-Formylpyridine N4-Allylthiosemicarbazone. Bioinorganic Chemistry and Applications, 2022, 2022, 1-18.	4.1	6
115	Measurement of Interpeptidic Cu ^{II} Exchange Rate Constants of Cu ^{II} -Amyloid-β Complexes to Small Peptide Motifs by Tryptophan Fluorescence Quenching. Inorganic Chemistry, 2021, 60, 7650-7659.	4.0	5
116	A Cu-amyloid \hat{l}^2 complex activating Fenton chemistry in Alzheimer's disease: Learning with multiple first-principles simulations. AIP Conference Proceedings, 2014, , .	0.4	4
117	Mutations of Histidineâ€13 to Arginine and Arginine 5 to Glycine Are Responsible for Different Coordination Sites of Zinc(II) to Human and Murine Peptides. Chemistry - A European Journal, 2018, 24, 14233-14241.	3.3	4
118	Learning chemistry with multiple first-principles simulations. Molecular Simulation, 2015, 41, 780-787.	2.0	3
119	A Waterâ€Soluble Peptoid Chelator that Can Remove Cu ²⁺ from Amyloidâ€Î² Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angewandte Chemie, 2021, 133, 24793-24802.	2.0	2
120	Solid-state and solution characterizations of [(TMPA)Cu(II)(SO3)] and [(TMPA)Cu(II)(S2O3)] complexes: Application to sulfite and thiosulfate fast detection. Journal of Inorganic Biochemistry, 2021, 225, 111601.	3.5	2
121	Properties and antioxidant activity of water-soluble iron catalysts with Schiff base ligands. Comparison with their manganese counterparts. Arkivoc, 2011, 2011, 327-342.	0.5	2
122	Versatile Activity of a Copper(II) Complex Bearing a N ₄ â€Tetradentate Schiff Base Ligand with Reduced Oxygen Species. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	2
123	Cull Binding to Various Forms of Amyloid- \hat{l}^2 Peptides: Are They Friends or Foes?. European Journal of Inorganic Chemistry, 2018, 2018, 2-2.	2.0	1
124	Effect of coordination dissymmetry on the catalytic activity of manganese catalase mimics. Journal of Inorganic Biochemistry, 2020, 213, 111264.	3.5	1
125	Coordination of Metal Ions to β-Amyloid Peptide: Impact on Alzheimer's Disease. Modecular Medicine and Medicinal, 2013, , 127-155.	0.4	0

Front Cover: Cull Binding to Various Forms of Amyloid-β Peptides: Are They Friends or Foes? (Eur. J.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
127	Frontispiece: N4 -Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copper-Amyloid- \hat{l}^2 1-16. Chemistry - A European Journal, 2018, 24, .	3.3	0
128	Concentrationâ€Dependent Interactions of Amphiphilic PiB Derivative Metal Complexes with Amyloid Peptides Aβ and Amylin**. Chemistry - A European Journal, 2021, 27, 1864-1864.	3.3	0
129	Copper Binding to Amyloid-Î ² Peptides. ChemistryViews, 0, , .	0.0	0

Crystal structure of catena-poly[[[dichloridocopper(II)]-{ν-tert-butyl N-methyl-N-[4-(6-{[4-(pyridin-2-yl-βN)-1H-1,2,3-triazol-1-yl-βN) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (3]methyl}-1,3-benzothiazol 0.5

Section E: Crystallographic Communications, 2018, 74, 158-162.