Gregory D Scholes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8777913/publications.pdf Version: 2024-02-01

	8755	7950
24,215	75	149
citations	h-index	g-index
415	415	18565
docs citations	times ranked	citing authors
	24,215 citations 415 docs citations	24,215 citations 75 h-index 415 docs citations 415 times ranked

#	Article	IF	CITATIONS
1	Lessons from nature about solar light harvesting. Nature Chemistry, 2011, 3, 763-774.	13.6	1,556
2	Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463, 644-647.	27.8	1,392
3	Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics, 2017, 11, 108-115.	31.4	1,175
4	Excitons in nanoscale systems. Nature Materials, 2006, 5, 683-696.	27.5	1,096
5	LONG-RANGERESONANCEENERGYTRANSFER INMOLECULARSYSTEMS. Annual Review of Physical Chemistry, 2003, 54, 57-87.	10.8	1,063
6	Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chemical Reviews, 2017, 117, 249-293.	47.7	802
7	Coherent Intrachain Energy Migration in a Conjugated Polymer at Room Temperature. Science, 2009, 323, 369-373.	12.6	705
8	Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method. Journal of Physical Chemistry B, 1998, 102, 5378-5386.	2.6	653
9	Using coherence to enhance function in chemical and biophysical systems. Nature, 2017, 543, 647-656.	27.8	477
10	On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria:  B800 to B850 Energy Transfer. Journal of Physical Chemistry B, 2000, 104, 1854-1868.	2.6	427
11	Beyond Förster Resonance Energy Transfer in Biological and Nanoscale Systems. Journal of Physical Chemistry B, 2009, 113, 6583-6599.	2.6	404
12	Coherence in Energy Transfer and Photosynthesis. Annual Review of Physical Chemistry, 2015, 66, 69-96.	10.8	327
13	Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model. Journal of Chemical Theory and Computation, 2009, 5, 1838-1848.	5.3	259
14	Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science, 2019, 364, 1166-1169.	12.6	256
15	Exploiting chemistry and molecular systems for quantum information science. Nature Reviews Chemistry, 2020, 4, 490-504.	30.2	247
16	Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nature Materials, 2017, 16, 35-44.	27.5	243
17	Electronic Energy Transfer and Quantum-Coherence in π-Conjugated Polymers. Chemistry of Materials, 2011, 23, 610-620.	6.7	225
18	Photosynthetic light harvesting: excitons and coherence. Journal of the Royal Society Interface, 2014, 11, 20130901.	3.4	225

#	Article	IF	CITATIONS
19	Adapting the Förster Theory of Energy Transfer for Modeling Dynamics in Aggregated Molecular Assemblies. Journal of Physical Chemistry B, 2001, 105, 1640-1651.	2.6	222
20	Controlling the Optical Properties of Inorganic Nanoparticles. Advanced Functional Materials, 2008, 18, 1157-1172.	14.9	221
21	Long-Lived Charge-Transfer States of Nickel(II) Aryl Halide Complexes Facilitate Bimolecular Photoinduced Electron Transfer. Journal of the American Chemical Society, 2018, 140, 3035-3039.	13.7	219
22	Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First?. Journal of Physical Chemistry Letters, 2010, 1, 2-8.	4.6	215
23	Structure‶uned Lead Halide Perovskite Nanocrystals. Advanced Materials, 2016, 28, 566-573.	21.0	215
24	Rate expressions for excitation transfer. II. Electronic considerations of direct and through–configuration exciton resonance interactions. Journal of Chemical Physics, 1994, 101, 10521-10525.	3.0	208
25	Exciton Delocalization Drives Rapid Singlet Fission in Nanoparticles of Acene Derivatives. Journal of the American Chemical Society, 2015, 137, 6790-6803.	13.7	195
26	Energy transfer from Förster–Dexter theory to quantum coherent light-harvesting. International Reviews in Physical Chemistry, 2011, 30, 49-77.	2.3	188
27	Observation of Two Triplet-Pair Intermediates in Singlet Exciton Fission. Journal of Physical Chemistry Letters, 2016, 7, 2370-2375.	4.6	186
28	The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. Journal of Chemical Physics, 2012, 137, 174109.	3.0	184
29	Comparison of Electronic and Vibrational Coherence Measured by Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 1904-1911.	4.6	181
30	Highly Efficient Warm White Organic Lightâ€Emitting Diodes by Triplet Exciton Conversion. Advanced Functional Materials, 2013, 23, 705-712.	14.9	168
31	³ d-d Excited States of Ni(II) Complexes Relevant to Photoredox Catalysis: Spectroscopic Identification and Mechanistic Implications. Journal of the American Chemical Society, 2020, 142, 5800-5810.	13.7	168
32	How Solvent Controls Electronic Energy Transfer and Light Harvesting. Journal of Physical Chemistry B, 2007, 111, 6978-6982.	2.6	167
33	Mixed-Halide Perovskites with Stabilized Bandgaps. Nano Letters, 2017, 17, 6863-6869.	9.1	165
34	Mechanistic Analysis of Metallaphotoredox C–N Coupling: Photocatalysis Initiates and Perpetuates Ni(I)/Ni(III) Coupling Activity. Journal of the American Chemical Society, 2020, 142, 15830-15841.	13.7	162
35	Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Physical Chemistry Chemical Physics, 2012, 14, 4857.	2.8	158
36	<i>In Situ</i> Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices. ACS Nano, 2017, 11, 3957-3964.	14.6	151

#	Article	IF	CITATIONS
37	Tuning Singlet Fission in π-Bridge-π Chromophores. Journal of the American Chemical Society, 2017, 139, 12488-12494.	13.7	147
38	Delayed fluorescence from a zirconium(iv) photosensitizer with ligand-to-metal charge-transfer excited states. Nature Chemistry, 2020, 12, 345-352.	13.6	144
39	Conformational Disorder and Ultrafast Exciton Relaxation in PPV-family Conjugated Polymers. Journal of Physical Chemistry B, 2009, 113, 656-667.	2.6	143
40	Broadband 2D Electronic Spectroscopy Reveals a Carotenoid Dark State in Purple Bacteria. Science, 2013, 340, 52-56.	12.6	143
41	Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer. Photochemical and Photobiological Sciences, 2008, 7, 1444-1448.	2.9	141
42	A Water-Soluble pH-Responsive Molecular Brush of Poly(<i>N</i> , <i>N</i> -dimethylaminoethyl) Tj ETQq0 0 0 rgB ⁻	Г /Overloct 4.8	k 10 Tf 50 5 138
43	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	48.7	136
44	Rate expressions for excitation transfer. III. Anab initiostudy of electronic factors in excitation transfer and exciton resonance interactions. Journal of Chemical Physics, 1995, 102, 9574-9581.	3.0	131
45	Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends. Nature Communications, 2014, 5, 4933.	12.8	131
46	Photosynthetic Light-Harvesting Is Tuned by the Heterogeneous Polarizable Environment of the Protein. Journal of the American Chemical Society, 2011, 133, 3078-3084.	13.7	123
47	Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent â€~ene'-reductases. Nature Chemistry, 2020, 12, 71-75.	13.6	123
48	Insights into Excitons Confined to Nanoscale Systems: Electron–Hole Interaction, Binding Energy, and Photodissociation. ACS Nano, 2008, 2, 523-537.	14.6	121
49	Charge Separation and Recombination in CdTe/CdSe Core/Shell Nanocrystals as a Function of Shell Coverage: Probing the Onset of the Quasi Type-II Regime. Journal of Physical Chemistry Letters, 2010, 1, 2530-2535.	4.6	121
50	Charge Photogeneration in Neat Conjugated Polymers. Chemistry of Materials, 2014, 26, 561-575.	6.7	118
51	Developing a Structure–Function Model for the Cryptophyte Phycoerythrin 545 Using Ultrahigh Resolution Crystallography and Ultrafast Laser Spectroscopy. Journal of Molecular Biology, 2004, 344, 135-153.	4.2	117
52	How Solvent Controls Electronic Energy Transfer and Light Harvesting:  Toward a Quantum-Mechanical Description of Reaction Field and Screening Effects. Journal of Physical Chemistry B, 2007, 111, 13253-13265.	2.6	117
53	Correlated Pair States Formed by Singlet Fission and Exciton–Exciton Annihilation. Journal of Physical Chemistry A, 2015, 119, 12699-12705.	2.5	116
54	Two-Dimensional Electronic Double-Quantum Coherence Spectroscopy. Accounts of Chemical Research, 2009, 42, 1375-1384.	15.6	113

#	Article	IF	CITATIONS
55	Solar light harvesting by energy transfer: from ecology to coherence. Energy and Environmental Science, 2012, 5, 9374.	30.8	113
56	Electronic and Vibrational Coherences in Resonance Energy Transfer along MEH-PPV Chains at Room Temperature. Journal of Physical Chemistry A, 2009, 113, 4223-4241.	2.5	111
57	Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nature Chemistry, 2012, 4, 396-404.	13.6	110
58	Transient Absorption Spectroscopy Offers Mechanistic Insights for an Iridium/Nickel-Catalyzed C–O Coupling. Journal of the American Chemical Society, 2020, 142, 4555-4559.	13.7	110
59	Vibronic Enhancement of Algae Light Harvesting. CheM, 2016, 1, 858-872.	11.7	109
60	Examining Förster Energy Transfer for Semiconductor Nanocrystalline Quantum Dot Donors and Acceptors. Journal of Physical Chemistry C, 2008, 112, 13336-13341.	3.1	104
61	On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. Journal of Materials Chemistry, 2010, 20, 3533.	6.7	103
62	Exciton Superposition States in CdSe Nanocrystals Measured Using Broadband Two-Dimensional Electronic Spectroscopy. Nano Letters, 2012, 12, 880-886.	9.1	102
63	Striking the right balance of intermolecular coupling for high-efficiency singlet fission. Chemical Science, 2018, 9, 6240-6259.	7.4	97
64	Water-Soluble CdSe Quantum Dots Passivated by a Multidentate Diblock Copolymer. Macromolecules, 2007, 40, 6377-6384.	4.8	95
65	Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nature Communications, 2015, 6, 6086.	12.8	94
66	Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nature Chemistry, 2018, 10, 177-183.	13.6	93
67	The photophysics of cryptophyte light-harvesting. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 1-17.	3.9	88
68	From Fundamental Theories to Quantum Coherences in Electron Transfer. Journal of the American Chemical Society, 2019, 141, 708-722.	13.7	85
69	Dynamic Exchange During Triplet Transport in Nanocrystalline TIPS-Pentacene Films. Journal of the American Chemical Society, 2016, 138, 16069-16080.	13.7	84
70	Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins. Journal of the American Chemical Society, 2021, 143, 97-102.	13.7	84
71	Exciton Trapping and Recombination in Type II CdSe/CdTe Nanorod Heterostructures. Journal of Physical Chemistry C, 2008, 112, 5423-5431.	3.1	83
72	Coherent Oscillations in the PC577 Cryptophyte Antenna Occur in the Excited Electronic State. Journal of Physical Chemistry B, 2014, 118, 1296-1308.	2.6	83

#	Article	IF	CITATIONS
73	Probing Solvation and Reaction Coordinates of Ultrafast Photoinduced Electron-Transfer Reactions Using Nonlinear Spectroscopies: Rhodamine 6G in Electron-Donating Solventsâ€. Journal of Physical Chemistry A, 1999, 103, 10348-10358.	2.5	82
74	Exciton Fine Structure and Spin Relaxation in Semiconductor Colloidal Quantum Dots. Accounts of Chemical Research, 2009, 42, 1037-1046.	15.6	81
75	Engineering Perovskite Nanocrystal Surface Termination for Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 15%. Advanced Functional Materials, 2019, 29, 1807284.	14.9	80
76	Exciton–bath coupling and inhomogeneous broadening in the optical spectroscopy of semiconductor quantum dots. Journal of Chemical Physics, 2003, 118, 9380-9388.	3.0	79
77	Through-Bond and Through-Space Coupling in Photoinduced Electron and Energy Transfer:Â AnabInitioand Semiempirical Study. The Journal of Physical Chemistry, 1996, 100, 10912-10918.	2.9	77
78	Crossing disciplines ―A view on twoâ€dimensional optical spectroscopy. Annalen Der Physik, 2014, 526, 31-49.	2.4	77
79	Influence of Bulky Organoâ€Ammonium Halide Additive Choice on the Flexibility and Efficiency of Perovskite Lightâ€Emitting Devices. Advanced Functional Materials, 2018, 28, 1802060.	14.9	76
80	Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 419-426.	4.6	74
81	Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation. Nature Chemistry, 2021, 13, 902-908.	13.6	74
82	The Nature of Excimer Formation in Crystalline Pyrene Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 21004-21017.	3.1	71
83	Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy. Scientific Reports, 2016, 6, 20834.	3.3	69
84	Excitation Dynamics in Phycoerythrin 545: Modeling of Steady-State Spectra and Transient Absorption with Modified Redfield Theory. Biophysical Journal, 2010, 99, 344-352.	0.5	67
85	Coherent Energy Transfer under Incoherent Light Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3136-3142.	4.6	66
86	Rate expressions for excitation transfer I. Radiationless transition theory perspective. Journal of Chemical Physics, 1994, 101, 1251-1261.	3.0	65
87	Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2666-75.	7.1	65
88	Solution-processed inorganic perovskite crystals as achromatic quarter-wave plates. Nature Photonics, 2021, 15, 813-816.	31.4	64
89	Exciton spin relaxation in quantum dots measured using ultrafast transient polarization grating spectroscopy. Physical Review B, 2006, 73, .	3.2	62
90	Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645. Photochemical and Photobiological Sciences, 2007, 6, 964-975.	2.9	62

#	Article	IF	CITATIONS
91	Direct Observation of Correlated Triplet Pair Dynamics during Singlet Fission Using Ultrafast Mid-IR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 2012-2022.	3.1	62
92	Local protein solvation drives direct down-conversion in phycobiliprotein PC645 via incoherent vibronic transport. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3342-E3350.	7.1	61
93	Polariton Transitions in Femtosecond Transient Absorption Studies of Ultrastrong Light–Molecule Coupling. Journal of Physical Chemistry Letters, 2020, 11, 2667-2674.	4.6	60
94	Configuration interaction and the theory of electronic factors in energy transfer and molecular exciton interactions. Journal of Chemical Physics, 1996, 104, 5054-5061.	3.0	59
95	Methylene Blue Exciton States Steer Nonradiative Relaxation: Ultrafast Spectroscopy of Methylene Blue Dimer. Journal of Physical Chemistry B, 2016, 120, 440-454.	2.6	59
96	Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets. Journal of Physical Chemistry A, 2016, 120, 6792-6799.	2.5	58
97	Triplet Energy Transfer Governs the Dissociation of the Correlated Triplet Pair in Exothermic Singlet Fission. Journal of Physical Chemistry Letters, 2018, 9, 4087-4095.	4.6	58
98	Carbene–Metal–Amide Bond Deformation, Rather Than Ligand Rotation, Drives Delayed Fluorescence. Journal of Physical Chemistry Letters, 2018, 9, 1620-1626.	4.6	57
99	Solution-processable, crystalline material for quantitative singlet fission. Materials Horizons, 2017, 4, 915-923.	12.2	56
100	Broadband Transient Absorption and Two-Dimensional Electronic Spectroscopy of Methylene Blue. Journal of Physical Chemistry A, 2015, 119, 9098-9108.	2.5	55
101	Relaxation in the Exciton Fine Structure of Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 795-811.	3.1	54
102	Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet–triplet annihilation. Energy and Environmental Science, 2017, 10, 1465-1475.	30.8	54
103	Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles. Journal of Chemical Physics, 2004, 121, 10104-10110.	3.0	52
104	How Energy Funnels from the Phycoerythrin Antenna Complex to Photosystem I and Photosystem II in CryptophyteRhodomonasCS24 Cells. Journal of Physical Chemistry B, 2006, 110, 25066-25073.	2.6	52
105	Loading quantum dots into thermo-responsive microgels by reversible transfer from organic solvents to water. Journal of Materials Chemistry, 2008, 18, 763.	6.7	52
106	Coherence Spectroscopy in the Condensed Phase: Insights into Molecular Structure, Environment, and Interactions. Accounts of Chemical Research, 2017, 50, 2746-2755.	15.6	52
107	The separation of vibrational coherence from ground- and excited-electronic states in P3HT film. Journal of Chemical Physics, 2015, 142, 212410.	3.0	51
108	Interplay of vibrational wavepackets during an ultrafast electron transfer reaction. Nature Chemistry, 2021, 13, 70-76.	13.6	51

#	Article	IF	CITATIONS
109	Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations. Journal of Physical Chemistry B, 2015, 119, 10025-10034.	2.6	50
110	Energy Flow in the Cryptophyte PE545 Antenna Is Directed by Bilin Pigment Conformation. Journal of Physical Chemistry B, 2013, 117, 4263-4273.	2.6	49
111	Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features. Journal of Chemical Physics, 2016, 144, 175102.	3.0	49
112	Broad-Band Pump–Probe Spectroscopy Quantifies Ultrafast Solvation Dynamics of Proteins and Molecules. Journal of Physical Chemistry Letters, 2016, 7, 4722-4731.	4.6	49
113	DNA-Templated Aggregates of Strongly Coupled Cyanine Dyes: Nonradiative Decay Governs Exciton Lifetimes. Journal of Physical Chemistry Letters, 2019, 10, 2386-2392.	4.6	49
114	Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chemical Reviews, 2022, 122, 4257-4321.	47.7	47
115	Biexcitonic Fine Structure of CdSe Nanocrystals Probed by Polarization-Dependent Two-Dimensional Photon Echo Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 3797-3806.	2.5	46
116	Measures and implications of electronic coherence in photosynthetic light-harvesting. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 3728-3749.	3.4	46
117	Twoâ€Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals. Small, 2016, 12, 2234-2244.	10.0	46
118	Photoenzymatic Reductions Enabled by Direct Excitation of Flavin-Dependent "Ene―Reductases. Journal of the American Chemical Society, 2021, 143, 1735-1739.	13.7	46
119	Nanocrystal Shape and the Mechanism of Exciton Spin Relaxation. Nano Letters, 2006, 6, 1765-1771.	9.1	45
120	Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers. Chemical Science, 2012, 3, 2270.	7.4	44
121	Manganese-Based Catalysts with Varying Ligand Substituents for the Electrochemical Reduction of CO ₂ to CO. Organometallics, 2019, 38, 1292-1299.	2.3	44
122	Entropy Reorders Polariton States. Journal of Physical Chemistry Letters, 2020, 11, 6389-6395.	4.6	42
123	μMap-Red: Proximity Labeling by Red Light Photocatalysis. Journal of the American Chemical Society, 2022, 144, 6154-6162.	13.7	42
124	Flow of Excitation Energy in the Cryptophyte Light-Harvesting Antenna Phycocyanin 645. Biophysical Journal, 2011, 101, 1004-1013.	0.5	41
125	Biexciton Resonances Reveal Exciton Localization in Stacked Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 3895-3901.	4.6	41
126	From coherent to vibronic light harvesting in photosynthesis. Current Opinion in Chemical Biology, 2018, 47, 39-46.	6.1	40

#	Article	IF	CITATIONS
127	On the rate of radiationless intermolecular energy transfer. Journal of Chemical Physics, 1992, 97, 7405-7413.	3.0	39
128	Polaritons and excitons: Hamiltonian design for enhanced coherence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200278.	2.1	39
129	Intramolecular radiationless transitions dominate exciton relaxation dynamics. Chemical Physics Letters, 2014, 599, 23-33.	2.6	38
130	Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Downhill Energy Transfer in Photosystem I Trimers of the Cyanobacterium <i>Thermosynechococcus elongatus</i> . Journal of Physical Chemistry Letters, 2012, 3, 3677-3684.	4.6	37
131	Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting. Journal of Chemical Physics, 2014, 140, 110901.	3.0	37
132	Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. Journal of Chemical Physics, 2020, 152, 204101.	3.0	36
133	Mechanism and Origin of Exciton Spin Relaxation in CdSe Nanorodsâ€. Journal of Physical Chemistry B, 2006, 110, 25371-25382.	2.6	34
134	A Little Coherence in Photosynthetic Light Harvesting. BioScience, 2014, 64, 14-25.	4.9	34
135	Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways. ACS Catalysis, 2021, 11, 1351-1360.	11.2	34
136	Engineering a Nonâ€Natural Photoenzyme for Improved Photon Efficiency**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
137	Rate expressions for excitation transfer. IV. Energy migration and superexchange phenomena. Journal of Chemical Physics, 1995, 103, 8873-8883.	3.0	33
138	Observing Vibrational Wavepackets during an Ultrafast Electron Transfer Reaction. Journal of Physical Chemistry A, 2015, 119, 11837-11846.	2.5	33
139	Charge Localization after Ultrafast Photoexcitation of a Rigid Perylene Perylenediimide Dyad Visualized by Transient Stark Effect. Journal of the American Chemical Society, 2017, 139, 5530-5537.	13.7	33
140	Quantum dynamics of a molecular emitter strongly coupled with surface plasmon polaritons: A macroscopic quantum electrodynamics approach. Journal of Chemical Physics, 2019, 151, 014105.	3.0	33
141	Shallow distance-dependent triplet energy migration mediated by endothermic charge-transfer. Nature Communications, 2021, 12, 1532.	12.8	33
142	Mediation of Ultrafast Light-Harvesting by a Central Dimer in Phycoerythrin 545 Studied by Transient Absorption and Global Analysis. Journal of Physical Chemistry B, 2005, 109, 14219-14226.	2.6	31
143	Ultrafast exciton dynamics in 2D in-plane hetero-nanostructures: delocalization and charge transfer. Physical Chemistry Chemical Physics, 2017, 19, 8373-8379.	2.8	31
144	Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission. Physical Chemistry Chemical Physics, 2017, 19, 23162-23175.	2.8	31

#	Article	IF	CITATIONS
145	Coherence in photosynthesis. Nature Physics, 2011, 7, 448-449.	16.7	30
146	Adding Amorphous Content to Highly Crystalline Polymer Nanowire Solar Cells Increases Performance. Advanced Materials, 2015, 27, 3484-3491.	21.0	29
147	Limits of exciton delocalization in molecular aggregates. Faraday Discussions, 2019, 221, 265-280.	3.2	29
148	Measurement of Electronâ^'Electron Interactions and Correlations Using Two-Dimensional Electronic Double-Quantum Coherence Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 12122-12133.	2.5	28
149	Coherence from Light Harvesting to Chemistry. Journal of Physical Chemistry Letters, 2018, 9, 1568-1572.	4.6	28
150	A cyanide-bridged di-manganese carbonyl complex that photochemically reduces CO ₂ to CO. Dalton Transactions, 2019, 48, 1226-1236.	3.3	28
151	lon-pair reorganization regulates reactivity in photoredox catalysts. Nature Chemistry, 2022, 14, 746-753.	13.6	28
152	Quantum dots in a metallopolymer host: studies of composites of polyferrocenes and CdSe nanocrystals. Journal of Materials Chemistry, 2003, 13, 2213.	6.7	27
153	Exploring Ultrafast Electronic Processes of Quasi-Type II Nanocrystals by Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 16255-16263.	3.1	27
154	Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. Journal of Physical Chemistry B, 2019, 123, 8628-8643.	2.6	27
155	Dinitrogen Coupling to a Terpyridine-Molybdenum Chromophore Is Switched on by Fermi Resonance. CheM, 2019, 5, 402-416.	11.7	27
156	Reduced Recombination and Capacitor-like Charge Buildup in an Organic Heterojunction. Journal of the American Chemical Society, 2020, 142, 2562-2571.	13.7	27
157	Two-dimensional electronic spectroscopy for mapping molecular photophysics. Pure and Applied Chemistry, 2013, 85, 1307-1319.	1.9	26
158	Overlap-Driven Splitting of Triplet Pairs in Singlet Fission. Journal of the American Chemical Society, 2020, 142, 20040-20047.	13.7	26
159	Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. Nature Chemistry, 2021, 13, 969-976.	13.6	26
160	Electronic interactions in rigidly linked naphthalene dimers. Chemical Physics Letters, 1998, 292, 601-606.	2.6	25
161	Green quantum computers. Nature Physics, 2010, 6, 402-403.	16.7	25
162	Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique. Journal of Chemical Physics, 2010, 132, 104506.	3.0	25

#	Article	IF	CITATIONS
163	Delocalization-Enhanced Long-Range Energy Transfer between Cryptophyte Algae PE545 Antenna Proteins. Journal of Physical Chemistry B, 2011, 115, 5243-5253.	2.6	25
164	Solar fuels and feedstocks: the quest for renewable black gold. Energy and Environmental Science, 2021, 14, 1402-1419.	30.8	25
165	Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. Journal of Physical Chemistry Letters, 2020, 11, 5948-5955.	4.6	24
166	Polariton Decay in Donor–Acceptor Cavity Systems. Journal of Physical Chemistry Letters, 2021, 12, 9774-9782.	4.6	22
167	Thermal Light Cannot Be Represented as a Statistical Mixture of Single Pulses. Physical Review Letters, 2015, 114, 213601.	7.8	21
168	Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair?. Journal of Physical Chemistry C, 2021, 125, 18119-18128.	3.1	21
169	PCET-Based Ligand Limits Charge Recombination with an Ir(III) Photoredox Catalyst. Journal of the American Chemical Society, 2021, 143, 13034-13043.	13.7	20
170	Boosting plant biology. Nature Materials, 2014, 13, 329-331.	27.5	19
171	Vibronic Wavepackets and Energy Transfer in Cryptophyte Light-Harvesting Complexes. Journal of Physical Chemistry B, 2018, 122, 6328-6340.	2.6	19
172	Surface passivation in CdSe nanocrystal–polymer films revealed by ultrafast excitation relaxation dynamics. Physica Status Solidi (B): Basic Research, 2004, 241, 1986-1993.	1.5	18
173	Interaction between excitons determines the non-linear response of nanocrystals. Chemical Physics, 2008, 350, 56-68.	1.9	18
174	Estimation of damped oscillation associated spectra from ultrafast transient absorption spectra. Journal of Chemical Physics, 2016, 145, 174201.	3.0	18
175	High Magnetic Field Detunes Vibronic Resonances in Photosynthetic Light Harvesting. Journal of Physical Chemistry Letters, 2018, 9, 5548-5554.	4.6	18
176	Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T. Proceedings of the United States of America, 2020, 117, 11289-11298.	7.1	18
177	Vibrational Dephasing along the Reaction Coordinate of an Electron Transfer Reaction. Journal of the American Chemical Society, 2021, 143, 14511-14522.	13.7	18
178	Two temperature regimes of triplet transfer in the dissociation of the correlated triplet pair after singlet fission. Canadian Journal of Chemistry, 2019, 97, 465-473.	1.1	18
179	Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Accounts of Chemical Research, 2022, 55, 1423-1434.	15.6	18
180	Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism. Journal of Chemical Physics, 2020, 153, 184102.	3.0	17

#	Article	IF	CITATIONS
181	Anisotropic Conjugated Polymer Chain Conformation Tailors the Energy Migration in Nanofibers. Journal of the American Chemical Society, 2016, 138, 15497-15505.	13.7	16
182	Virtual Issue on Metal-Halide Perovskite Nanocrystals—A Bright Future for Optoelectronics. Chemistry of Materials, 2017, 29, 8915-8917.	6.7	16
183	Singlet Fission in Core–Shell Micelles of End-Functionalized Polymers. Chemistry of Materials, 2018, 30, 4409-4421.	6.7	16
184	Evaluation of excited state bond weakening for ammonia synthesis from a manganese nitride: stepwise proton coupled electron transfer is preferred over hydrogen atom transfer. Chemical Communications, 2019, 55, 5595-5598.	4.1	16
185	Preparation and photo/chemical-activation of wormlike network micelles of core–shell quantum dots and block copolymer hybrids. Journal of Materials Chemistry, 2011, 21, 9692.	6.7	15
186	Method of developing analytical multipartite delocalization measures for mixedW-like states. Physical Review A, 2014, 90, .	2.5	15
187	Introduction: Light Harvesting. Chemical Reviews, 2017, 117, 247-248.	47.7	15
188	Spectral Variability in Phycocyanin Cryptophyte Antenna Complexes is Controlled by Changes in the αâ€Polypeptide Chains. ChemPhotoChem, 2019, 3, 945-956.	3.0	15
189	Femtosecond Photophysics of Molecular Polaritons. Journal of Physical Chemistry Letters, 2021, 12, 11444-11459.	4.6	15
190	Direct observation of three-photon resonance in water-soluble ZnS quantum dots. Applied Physics Letters, 2008, 92, .	3.3	14
191	Structural Refinement of Ladder-Type Perylenediimide Dimers: A Classical Tale of Conformational Dynamics. Journal of Organic Chemistry, 2013, 78, 8634-8644.	3.2	14
192	Reduction-induced CO dissociation by a [Mn(bpy)(CO) ₄][SbF ₆] complex and its relevance in electrocatalytic CO ₂ reduction. Dalton Transactions, 2020, 49, 891-900.	3.3	14
193	Controllable Phycobilin Modification: An Alternative Photoacclimation Response in Cryptophyte Algae. ACS Central Science, 2022, 8, 340-350.	11.3	14
194	The <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>A</mml:mi>><mml:mrow><mml:mrow>< state falls below <mml:math <br="" altimg="si2.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mn>3</mml:mn><mml:msubsup><mml:mrow><mml:mi>A</mml:mi><td>:mml:mi>; 1.9 nl:mrow></td><td>g< 13 <mml:mrow></mml:mrow></td></mml:mrow></mml:msubsup></mml:mrow></mml:math></mml:mrow></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math>	:mml:mi>; 1.9 nl:mrow>	g< 13 <mml:mrow></mml:mrow>
195	Chemical Physics, 2018, 515, 757-767. Ultrafast Photophysics of a Dinitrogen-Bridged Molybdenum Complex. Journal of the American Chemical Society, 2018, 140, 6298-6307.	13.7	13
196	Transient Drude Response Dominates Near-Infrared Pump–Probe Reflectivity in Nodal-Line Semimetals ZrSiS and ZrSiSe. Journal of Physical Chemistry Letters, 2020, 11, 6105-6111.	4.6	13
197	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
198	Phycobiliprotein diffusion in chloroplasts of cryptophyte Rhodomonas CS24. Photosynthesis Research, 2009, 100, 7-17.	2.9	12

#	Article	IF	CITATIONS
199	Excitons in nanoscale systems. , 2010, , 12-25.		12
200	Threeâ€Pulse Photonâ€Echo Peak Shift Spectroscopy and Its Application for the Study of Solvation and Nanoscale Excitons. ChemPhysChem, 2011, 12, 88-100.	2.1	12
201	Toward the Control of Nonradiative Processes in Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2013, 4, 2091-2093.	4.6	12
202	Life—Warm, wet and noisy?. Physics of Life Reviews, 2014, 11, 85-86.	2.8	12
203	B800–B850 coherence correlates with energy transfer rates in the LH2 complex of photosynthetic purple bacteria. Physical Chemistry Chemical Physics, 2015, 17, 30805-30816.	2.8	12
204	Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements. Jacs Au, 2022, 2, 407-418.	7.9	12
205	Determination of the protonation preferences of bilin pigments in cryptophyte antenna complexes. Physical Chemistry Chemical Physics, 2018, 20, 21404-21416.	2.8	11
206	Observation of Charge Generation via Photoinduced Stark Effect in Mixed-Cation Lead Bromide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2020, 11, 10081-10087.	4.6	11
207	Ultrafast Dynamics of Nonrigid Zinc-Porphyrin Arrays Mimicking the Photosynthetic "Special Pair― Journal of Physical Chemistry Letters, 2020, 11, 3443-3450.	4.6	11
208	Photoluminescence of Functionalized Germanium Nanocrystals Embedded in Arsenic Sulfide Glass. ACS Applied Materials & Interfaces, 2017, 9, 18911-18917.	8.0	10
209	Is back-electron transfer process in Betaine-30 coherent?. Chemical Physics Letters, 2017, 683, 500-506.	2.6	10
210	Characterization of the ultrafast spectral diffusion and vibronic coherence of TIPS-pentacene using 2D electronic spectroscopy. Journal of Chemical Physics, 2021, 155, 014302.	3.0	10
211	Upconversion photoluminescence of CdS nanocrystals in polymeric film. Journal of Applied Physics, 2008, 104, .	2.5	9
212	Cooperative Subunit Refolding of a Lightâ€Harvesting Protein through a Selfâ€Chaperone Mechanism. Angewandte Chemie - International Edition, 2017, 56, 8384-8388.	13.8	9
213	Active-Site Environmental Factors Customize the Photophysics of Photoenzymatic Old Yellow Enzymes. Journal of Physical Chemistry B, 2020, 124, 11236-11249.	2.6	9
214	Excited-State Dynamics of 5,14- vs 6,13-Bis(trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. Journal of Physical Chemistry C, 2022, 126, 9784-9793.	3.1	9
215	Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory. Journal of Photochemistry and Photobiology B: Biology, 2019, 190, 110-117.	3.8	8
216	Low-Frequency Vibronic Mixing Modulates the Excitation Energy Flow in Bacterial Light-Harvesting Complex II. Journal of Physical Chemistry Letters, 2021, 12, 6292-6298.	4.6	8

#	Article	IF	CITATIONS
217	Vibrational Modes Promoting Exciton Relaxation in the B850 Band of LH2. Journal of Physical Chemistry Letters, 2022, 13, 1099-1106.	4.6	8
218	Slow morphology evolution of block copolymer–quantum dot hybrid networks in solution. Soft Matter, 2013, 9, 8887.	2.7	7
219	Improved power conversion efficiency for bulk heterojunction solar cells incorporating CdTe-CdSe nanoheterostructure acceptors and a conjugated polymer donor. Journal of Photonics for Energy, 2015, 5, 057409.	1.3	7
220	Direct Synthesis of CdSe Nanocrystals with Electroactive Ligands. Chemistry of Materials, 2016, 28, 4953-4961.	6.7	7
221	Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll- <i>a</i> Protein Using Two-Dimensional Electronic Spectroscopy and Förster Theory. Journal of Physical Chemistry B, 2019, 123, 6410-6420.	2.6	7
222	Signature of an ultrafast photoinduced Lifshitz transition in the nodal-line semimetal ZrSiTe. Physical Review B, 2021, 103, .	3.2	7
223	A Nanometric Probe of the Local Proton Concentration in Microtubule-Based Biophysical Systems. Nano Letters, 2022, 22, 517-523.	9.1	7
224	Structure and Excitedâ€State Interactions in Composites of CdSe Nanorods and Interfaceâ€Compatible Polythiopheneâ€ <i>graft</i> â€poly(<i>N</i> , <i>N</i> â€dimethylaminoethyl methacrylates). Macromolecular Chemistry and Physics, 2010, 211, 393-403.	2.2	6
225	Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. Journal of Physical Chemistry B, 2018, 122, 5835-5844.	2.6	6
226	Organizing Crystalline Functionalized Pentacene Using Periodicity of Poly(Vinyl Alcohol). Journal of Physical Chemistry Letters, 2020, 11, 516-523.	4.6	6
227	Impairment of T cells' antiviral and anti-inflammation immunities may be critical to death from COVID-19. Royal Society Open Science, 2021, 8, 211606.	2.4	6
228	Solvent-dependent photo-induced dynamics in a non-rigidly linked zinc phthalocyanine–perylenediimide dyad probed using ultrafast spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 21078-21089.	2.8	5
229	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
230	Configuration mixing upon reorganization of dihedral angle induces rapid intersystem crossing in organic photoredox catalyst. Physical Chemistry Chemical Physics, 2020, 22, 13292-13298.	2.8	5
231	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
232	Emergence of Collective Coherent States from Strong-Light Coupling of Disordered Systems. Journal of Physical Chemistry A, 2021, 125, 6739-6750.	2.5	5
233	Drop-in two-dimensional electronic spectroscopy based on dual modulation in the pump-probe geometry. Optics Letters, 2019, 44, 2653.	3.3	5
234	Square-Net Topological Semimetals: How Spectroscopy Furthers Understanding and Control. Journal of Physical Chemistry Letters, 2022, 13, 838-850.	4.6	5

#	Article	IF	CITATIONS
235	Electronic Interactions & Interchromophore Energy Transfer. Advances in Multi-photon Processes and Spectroscopy, 1996, , 95-331.	0.6	4
236	EXCITONS IN NANOSCALE SYSTEMS: FUNDAMENTALS AND APPLICATIONS. Annual Review of Nano Research, 2008, , 103-157.	0.2	4
237	Extreme cross-peak 2D spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10031-10032.	7.1	4
238	Binary small molecule organic nanoparticles exhibit both direct and diffusion-limited ultrafast charge transfer with NIR excitation. Nanoscale, 2019, 11, 2385-2392.	5.6	4
239	Highâ€Voltage Photogeneration Exclusively via Aggregationâ€Induced Triplet States in a Heavyâ€Atomâ€Free Nonplanar Organic Semiconductor. Advanced Energy Materials, 2019, 9, 1901649.	19.5	4
240	Two-Dimensional Electronic Spectroscopy Using Rotating Optical Flats. Journal of Physical Chemistry A, 2020, 124, 1053-1061.	2.5	4
241	Vibronic and excitonic dynamics in perylenediimide dimers and tetramer. Journal of Chemical Physics, 2020, 153, 224101.	3.0	4
242	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
243	Uncovering dark multichromophoric states in Peridinin–Chlorophyll–Protein. Journal of the Royal Society Interface, 2020, 17, 20190736.	3.4	4
244	Morphological Requirements for Nanoscale Electric Field Buildup in a Bulk Heterojunction Solar Cell. Journal of Physical Chemistry Letters, 2021, 12, 537-545.	4.6	4
245	Cooperative Subunit Refolding of a Lightâ€Harvesting Protein through a Selfâ€Chaperone Mechanism. Angewandte Chemie, 2017, 129, 8504-8508.	2.0	3
246	Chinese Spring Festival Editorial. Journal of Physical Chemistry Letters, 2019, 10, 701-701.	4.6	3
247	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
248	Toward witnessing molecular exciton entanglement from spectroscopy. Physical Review A, 2021, 104, .	2.5	3
249	Light-powered molecular logic goes nonlinear. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17167-17168.	7.1	2
250	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	2.5	2
251	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	4.6	2
252	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2

#	Article	IF	CITATIONS
253	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
254	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
255	Ir(III)-Naphthoquinone complex as a platform for photocatalytic activity. Journal of Photochemistry and Photobiology, 2022, 9, 100098.	2.5	2
256	The effect of intermolecular electronic coupling on the exciton dynamics in perylene red nanoparticles. Physical Chemistry Chemical Physics, 2022, 24, 8695-8704.	2.8	2
257	Photomodification of CdSe nanocrystals incorporated in a poly(butylmethacrylate) polymer film. Journal of Applied Physics, 2006, 99, 014305.	2.5	1
258	Advances in Bionanotechnolgy. Journal of Physical Chemistry Letters, 2011, 2, 2678-2679.	4.6	1
259	Photons and Physical Chemistry. Journal of Physical Chemistry Letters, 2013, 4, 4019-4019.	4.6	1
260	Managing Complex Photophysical Pathways for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2014, 5, 2380-2381.	4.6	1
261	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	2.6	1
262	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	3.1	1
263	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
264	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
265	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
266	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
267	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
268	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
269	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
270	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1

#	Article	IF	CITATIONS
271	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
272	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
273	JPCL: A New Era. Journal of Physical Chemistry Letters, 2020, 11, 349-351.	4.6	1
274	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
275	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
276	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
277	Coherent Spectroscopy of PDI-based Artificial Light-Harvesting Antenna. , 2016, , .		1
278	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
279	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
280	Transparent Peer Review: A Look Inside the Peer Review Process. ACS Central Science, 2021, 7, 1771-1772.	11.3	1
281	Virtual Issue on Polaritons in Physical Chemistry. Journal of Physical Chemistry Letters, 2020, 11, 7920-7924.	4.6	1
282	Observation of conformational dynamics in single light-harvesting proteins from cryptophyte algae. Journal of Chemical Physics, 0, , .	3.0	1
283	Hydrogen Atoms Dragging Electrons. Journal of Physical Chemistry Letters, 2011, 2, 1490-1490.	4.6	Ο
284	The Dream Microscope for a Biophysical Chemist. Journal of Physical Chemistry Letters, 2012, 3, 555-555.	4.6	0
285	Spin for Physical Chemists. Journal of Physical Chemistry Letters, 2012, 3, 2247-2247.	4.6	Ο
286	Excitons Racing Against the Clock. Journal of Physical Chemistry Letters, 2015, 6, 3390-3390.	4.6	0
287	Spotlight on Your Work. Journal of Physical Chemistry Letters, 2016, 7, 3157-3157.	4.6	0
288	The Matter of Urgency. Journal of Physical Chemistry Letters, 2016, 7, 1933-1933.	4.6	0

#	Article	IF	CITATIONS
289	The JPCL New Year's Editorial. Journal of Physical Chemistry Letters, 2017, 8, 41-41.	4.6	Ο
290	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry C, 2017, 121, 23849-23851.	3.1	0
291	Perspective Collections in the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 5239-5239.	4.6	0
292	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3925-3925.	4.6	0
293	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3718-3719.	4.6	0
294	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry A, 2017, 121, 8185-8187.	2.5	0
295	In the Limelight: Perspective Collections on Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 5688-5688.	4.6	0
296	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry Letters, 2017, 8, 5306-5308.	4.6	0
297	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry B, 2017, 121, 9983-9985.	2.6	0
298	Editorial: 2017 in Perspective. Journal of Physical Chemistry Letters, 2018, 9, 138-140.	4.6	0
299	JPCL: A Dynamic Journal with a Global Reach. Journal of Physical Chemistry Letters, 2019, 10, 113-114.	4.6	0
300	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
301	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
302	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
303	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
304	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
305	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
306	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0

#	Article	IF	CITATIONS
307	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
308	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
309	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	ο
310	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
311	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	О
312	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
313	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
314	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
315	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	Ο
316	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
317	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	Ο
318	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
319	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		Ο
320	Virtual Issue on Polaritons in Physical Chemistry. Journal of Physical Chemistry C, 2020, 124, 19875-19879.	3.1	0
321	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
322	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
323	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
324	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	Ο
326	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
327	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	Ο
328	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
329	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	Ο
330	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
331	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	Ο
332	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
333	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
334	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
335	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
336	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
337	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
338	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
339	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	Ο
340	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
341	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
342	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0

#	Article	IF	CITATIONS
343	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	Ο
344	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
345	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
346	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
347	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
348	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
349	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
350	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
351	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
352	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
353	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
354	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
355	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
356	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
357	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
358	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
359	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
360	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0

#	Article	IF	CITATIONS
361	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
362	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
363	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	Ο
364	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
365	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
366	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
367	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
368	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
369	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
370	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
371	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
372	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
373	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
374	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
375	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
376	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
377	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
378	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0

#	Article	IF	CITATIONS
379	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
380	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
381	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
382	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
383	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
384	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
385	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
386	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
387	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
388	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
389	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
390	JPCL: One Year In. Journal of Physical Chemistry Letters, 2021, 12, 478-479.	4.6	0
391	Ultrafast photophysics of metal halide perovskite multiple quantum wells: device implications and reconciling band alignment. , 2019, , .		0
392	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
393	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
394	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
395	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
396	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0

#	Article	IF	CITATIONS
397	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
398	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
399	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
400	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
401	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
402	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
403	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
404	Ultrafast Dynamics of Singlet Excitons in Perylene Derivative Nanoparticles. , 2020, , .		0
405	Transparent Peer Review: A Look Inside the Peer Review Process. Journal of Physical Chemistry Letters, 2021, 12, 10861-10862.	4.6	0
406	JPCL: Moving Forward in 2022. Journal of Physical Chemistry Letters, 2022, 13, 649-649.	4.6	0