List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8777169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Surface Chemistry of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles on Protein Corona Formation and Endothelial Cell Uptake, Toxicity, and Barrier Function. Toxicological Sciences, 2022, 188, 261-275.	3.1	8
2	Physical characterization and in vitro evaluation of 3D printed hydroxyapatite, tricalcium phosphate, zirconia, alumina, and SiAlON structures made by lithographic ceramic manufacturing. MRS Advances, 2020, 5, 2419-2428.	0.9	2
3	Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles. Journal of Applied Toxicology, 2020, 40, 918-930.	2.8	25
4	Effects of Subcytotoxic Exposure of Silver Nanoparticles on Osteogenic Differentiation of Human Bone Marrow Stem Cells. Applied in Vitro Toxicology, 2019, 5, 123-133.	1.1	12
5	Sintered Tape-cast 3YSZ Supports Human Bone Marrow Derived Stem Cell Osteogenic Differentiation. MRS Advances, 2019, 4, 2541-2549.	0.9	0
6	Toxicity and photosensitizing assessment of gelatin methacryloyl-based hydrogels photoinitiated with lithium phenyl-2,4,6-trimethylbenzoylphosphinate in human primary renal proximal tubule epithelial cells. Biointerphases, 2019, 14, 021007.	1.6	44
7	Ultrananocrystalline diamond-coated nanoporous membranes support SK-N-SH neuroblastoma endothelial cell attachment. Interface Focus, 2018, 8, 20170063.	3.0	10
8	Biological responses to immobilized microscale and nanoscale surface topographies. , 2018, 182, 33-55.		68
9	Deriving a provisional tolerable intake for intravenous exposure to silver nanoparticles released from medical devices. Regulatory Toxicology and Pharmacology, 2017, 85, 108-118.	2.7	11
10	Investigating the susceptibility of mice to a bacterial challenge after intravenous exposure to durable nanoparticles. Nanomedicine, 2017, 12, 2097-2111.	3.3	1
11	Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicology in Vitro, 2017, 38, 179-192.	2.4	182
12	Effects of nanotopography on the <i>in vitro</i> hemocompatibility of nanocrystalline diamond coatings. Journal of Biomedical Materials Research - Part A, 2017, 105, 253-264.	4.0	17
13	Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions. Particle and Fibre Toxicology, 2017, 14, 25.	6.2	26
14	Nanosilver-PMMA composite coating optimized to provide robust antibacterial efficacy while minimizing human bone marrow stromal cell toxicity. Toxicology in Vitro, 2017, 44, 248-255.	2.4	17
15	Effects of iron oxide nanoparticles on biological responses and <scp>MR</scp> imaging properties in human mammary healthy and breast cancer epithelial cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1032-1042.	3.4	14
16	Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies. Jom, 2016, 68, 1672-1678.	1.9	14
17	Silver Nanoparticle-Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size-Dependent. Toxicological Sciences, 2016, 150, 473-487.	3.1	150
18	Intracellular accumulation and dissolution of silver nanoparticles in L-929 fibroblast cells using live cell time-lapse microscopy. Nanotoxicology, 2016, 10, 710-719.	3.0	18

#	Article	IF	CITATIONS
19	Distribution and accumulation of 10 nm silver nanoparticles in maternal tissues and visceral yolk sac of pregnant mice, and a potential effect on embryo growth. Nanotoxicology, 2016, 10, 654-661.	3.0	51
20	Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An <l>ln</l> <l>Vitro</l> Evaluation. Journal of Biomedical Nanotechnology, 2015, 11, 2275-2285.	1.1	21
21	Flow cytometry evaluation of inÂvitro cellular necrosis and apoptosis induced by silver nanoparticles. Food and Chemical Toxicology, 2015, 85, 45-51.	3.6	64
22	Laser 3D Printing with Subâ€Microscale Resolution of Porous Elastomeric Scaffolds for Supporting Human Bone Stem Cells. Advanced Healthcare Materials, 2015, 4, 739-747.	7.6	65
23	Urinary biomarkers track the progression of nephropathy in hypertensive and obese rats. Biomarkers in Medicine, 2014, 8, 85-94.	1.4	27
24	Stereolithography in tissue engineering. Journal of Materials Science: Materials in Medicine, 2014, 25, 845-856.	3.6	247
25	Cytotoxic evaluation of nanostructured zinc oxide (ZnO) thin films and leachates. Toxicology in Vitro, 2014, 28, 1144-1152.	2.4	29
26	Prevention of Ultraviolet (UV)-Induced Surface Damage and Cytotoxicity of Polyethersulfone Using Atomic Layer Deposition (ALD) Titanium Dioxide. Jom, 2013, 65, 550-556.	1.9	14
27	Fibrinogen Excretion in the Urine and Immunoreactivity in the Kidney Serves as a Translational Biomarker for Acute Kidney Injury. American Journal of Pathology, 2012, 181, 818-828.	3.8	44
28	Urinary Biomarker Detection of Melamine- and Cyanuric Acid-Induced Kidney Injury in Rats. Toxicological Sciences, 2012, 129, 1-8.	3.1	17
29	Distribution of silver nanoparticles in pregnant mice and developing embryos. Nanotoxicology, 2012, 6, 912-922.	3.0	104
30	Expression, Circulation, and Excretion Profile of MicroRNA-21, -155, and -18a Following Acute Kidney Injury. Toxicological Sciences, 2012, 129, 256-267.	3.1	173
31	<i>In Vitro</i> Cytotoxicity of Rare Earth Oxide Nanoparticles for Imaging Applications. International Journal of Applied Ceramic Technology, 2012, 9, 881-892.	2.1	13
32	Laser micro- and nanofabrication of biomaterials. MRS Bulletin, 2011, 36, 973-982.	3.5	20
33	Cellular Uptake and Fate of PEGylated Gold Nanoparticles Is Dependent on Both Cell-Penetration Peptides and Particle Size. ACS Nano, 2011, 5, 6434-6448.	14.6	381
34	Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators. Nanotoxicology, 2011, 5, 284-295.	3.0	95
35	Physicochemical Characterization and In Vitro Hemolysis Evaluation of Silver Nanoparticles. Toxicological Sciences, 2011, 123, 133-143.	3.1	248
36	What we know and don't know about the bioeffects of nanoparticles: developing experimental approaches for safety assessment. Biomedical Microdevices, 2010, 12, 569-573.	2.8	10

#	Article	IF	CITATIONS
37	Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nature Biotechnology, 2010, 28, 455-462.	17.5	355
38	Towards consensus practices to qualify safety biomarkers for use in early drug development. Nature Biotechnology, 2010, 28, 446-454.	17.5	113
39	Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nature Biotechnology, 2010, 28, 478-485.	17.5	552
40	Differences in Immunolocalization of Kim-1, RPA-1, and RPA-2 in Kidneys of Gentamicin-, Cisplatin-, and Valproic Acid-Treated Rats: Potential Role of iNOS and Nitrotyrosine. Toxicologic Pathology, 2009, 37, 629-643.	1.8	37
41	Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micronâ€sized particles in RAW 264.7 macrophages. Journal of Applied Toxicology, 2009, 29, 52-60.	2.8	103
42	Comparison of Kidney Injury Molecule-1 and Other Nephrotoxicity Biomarkers in Urine and Kidney Following Acute Exposure to Gentamicin, Mercury, and Chromium. Toxicological Sciences, 2008, 101, 159-170.	3.1	251
43	Immunolocalization of Kim-1, RPA-1, and RPA-2 in Kidney of Gentamicin-, Mercury-, or Chromium-Treated Rats: Relationship to Renal Distributions of iNOS and Nitrotyrosine. Toxicologic Pathology, 2008, 36, 397-409.	1.8	68
44	Renal Papillary Antigen-1 (RPA-1) Cross-Reactivity in Necrotic Renal Proximal Tubules: Significance of Immunohistochemistry and Histopathology. Toxicologic Pathology, 2008, 36, 891-893.	1.8	4
45	Regulation of uterine hsp90α, hsp72 and HSF-1 transcription in B6C3F1 mice by β-estradiol and bisphenol A: involvement of the estrogen receptor and protein kinase C. Toxicology Letters, 2003, 144, 257-270.	0.8	42
46	The Road to Elucidating the Mechanism of Manganese-Bilirubin-Induced Cholestasis. Toxicological Sciences, 2003, 73, 216-219.	3.1	13
47	Differential Hepatotoxicity Induced by Cadmium in Fischer 344 and Sprague-Dawley Rats. Toxicological Sciences, 2002, 65, 151-159.	3.1	71
48	Effects of 17α-methyltestosterone on uterine morphology and heat shock protein expression are mediated through estrogen and androgen receptors. Journal of Steroid Biochemistry and Molecular Biology, 2002, 82, 305-314.	2.5	24
49	Bisphenol A-Induced Increase in Uterine Weight and Alterations in Uterine Morphology in Ovariectomized B6C3F1 Mice: Role of the Estrogen Receptor. Toxicological Sciences, 2000, 56, 332-339.	3.1	101
50	Effects of Particulate and Soluble Cadmium Species on Biochemical and Functional Parameters in Cultured Murine Macrophages. In Vitro & Molecular Toxicology, 2000, 13, 125-136.	0.7	26
51	Mercuric chloride-induced apoptosis is dependent on protein synthesis. Toxicology Letters, 1999, 105, 183-195.	0.8	19
52	Stress protein synthesis induced by cadmium-cysteine in rat kidney. Toxicology, 1993, 85, 25-39.	4.2	25
53	Development of an Animal Model for Testing Human Breast Implantation Materials. Toxicologic Pathology, 1993, 21, 261-273.	1.8	13
54	Relationship between stress protein induction in rat kidney by mercuric chloride and nephrotoxicity. Toxicology and Applied Pharmacology, 1992, 113, 184-191.	2.8	67

#	Article	IF	CITATIONS
55	Interaction of copper with DNA and antagonism by other metals. Toxicology and Applied Pharmacology, 1991, 110, 477-485.	2.8	126
56	Metallothionein and other cadmium-binding proteins: recent developments. Chemical Research in Toxicology, 1990, 3, 281-288.	3.3	194
57	Inhibition of liver, kidney, and erythrocyte δ-aminolevulinic acid dehydratase (porphobilinogen) Tj ETQq1 1 0.7843	314 rgBT / 7.5	Overlock 10
58	Acute exposure to formaldehyde induces hepatic metallothionein synthesis in mice. Toxicology and Applied Pharmacology, 1989, 98, 325-337.	2.8	9
59	Effect of intratracheal gallium arsenide administration on δ-aminolevulinic acid dehydratase in rats: Relationship to urinary excretion of aminolevulinic acid. Toxicology and Applied Pharmacology, 1988, 92, 179-193.	2.8	86
60	Regulatory Roles of High-Affinity Metal-Binding Proteins in Mediating Lead Effects on ?-Aminolevulinic Acid Dehydratase. Annals of the New York Academy of Sciences, 1987, 514, 235-247.	3.8	14
61	Mechanism of Urinary Excretion of ?-Aminolevulinic Acid after Intratracheal Instillation of Gallium Arsenide. Annals of the New York Academy of Sciences, 1987, 514, 330-332.	3.8	5
62	Kidney zinc-thionein regulation of Îʿ-aminolevulinic acid dehydratase inhibition by lead. Archives of Biochemistry and Biophysics, 1987, 253, 48-55.	3.0	36
63	In vivo31P nuclear magnetic resonance studies of arsenite induced changes in hepatic phosphate levels. Biochemical and Biophysical Research Communications, 1986, 139, 228-234.	2.1	30
64	Induction of hepatic metallothionein in mouse liver following administration of chelating agents. Toxicology and Applied Pharmacology, 1985, 80, 467-472.	2.8	36
65	Role of Sulfhydryls in the Hepatotoxicity of Organic and Metallic Compounds. Toxicological Sciences, 1985, 5, 806-815.	3.1	4
66	Mechanism of manganese-induced tolerance to cadmium lethality and hepatotoxicity. Biochemical Pharmacology, 1985, 34, 1371-1379.	4.4	28
67	Zinc-induced tolerance to cadmium hepatotoxicity. Toxicology and Applied Pharmacology, 1984, 74, 299-307.	2.8	152
68	Tolerance to cadmium-induced hepatotoxicity following cadmium pretreatment. Toxicology and Applied Pharmacology, 1984, 74, 308-313.	2.8	96
69	Resistance to cadmium-induced hepatotoxicity in immature rats. Toxicology and Applied Pharmacology, 1984, 74, 321-329.	2.8	68
70	Altered subcellular distribution of cadmium following cadmium pretreatment: Possible mechanism of tolerance to cadmium-induced lethality. Toxicology and Applied Pharmacology, 1983, 70, 195-203.	2.8	146