Kristian Prydz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8776670/publications.pdf

Version: 2024-02-01

471509 580821 26 906 17 25 citations h-index g-index papers 26 26 26 1176 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Metabolic Labeling of Proteoglycans and Analysis of Their Synthesis and Sorting in Filter-Grown and Polarized. Methods in Molecular Biology, 2022, 2303, 25-36.	0.9	O
2	The life cycle and enigmatic egress of coronaviruses. Molecular Microbiology, 2022, 117, 1308-1316.	2.5	12
3	Evidence for the role of Rab11-positive recycling endosomes as intermediates in coronavirus egress from epithelial cells. Histochemistry and Cell Biology, 2022, 158, 241-251.	1.7	5
4	Assembly and Cellular Exit of Coronaviruses: Hijacking an Unconventional Secretory Pathway from the Pre-Golgi Intermediate Compartment via the Golgi Ribbon to the Extracellular Space. Cells, 2021, 10, 503.	4.1	47
5	Proteoglycan synthesis in conserved oligomeric Golgi subunit deficient <scp>HEK293T</scp> cells is affected differently, depending on the lacking subunit. Traffic, 2021, 22, 230-239.	2.7	9
6	A New Look at the Functional Organization of the Golgi Ribbon. Frontiers in Cell and Developmental Biology, 2019, 7, 171.	3.7	47
7	Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules, 2015, 5, 2003-2022.	4.0	121
8	PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells. Glycobiology, 2015, 25, 30-41.	2.5	12
9	Arrivals and departures at the plasma membrane: direct and indirect transport routes. Cell and Tissue Research, 2013, 352, 5-20.	2.9	31
10	Easy HPLC-based separation and quantitation of chondroitin sulphate and hyaluronan disaccharides after chondroitinase ABC treatment. Carbohydrate Research, 2011, 346, 50-57.	2.3	21
11	Glycosaminoglycan secretion in xyloside treated polarized human colon carcinoma Caco-2 cells. Glycoconjugate Journal, 2009, 26, 1117-1124.	2.7	8
12	A Secretory Golgi Bypass Route to the Apical Surface Domain of Epithelial MDCK Cells. Traffic, 2009, 10, 1685-1695.	2.7	36
13	Neutralization of endomembrane compartments in epithelial MDCK cells affects proteoglycan synthesis in the apical secretory pathway. Biochemical Journal, 2009, 418, 517-528.	3.7	17
14	How Many Ways Through the Golgi Maze?. Traffic, 2008, 9, 299-304.	2.7	31
15	Overexpression of the 3′-Phosphoadenosine 5′-Phosphosulfate (PAPS) Transporter 1 Increases Sulfation of Chondroitin Sulfate in the Apical Pathway of MDCK II Cells. Glycobiology, 2008, 18, 53-65.	2.5	31
16	Differences in the apical and basolateral pathways for glycosaminoglycan biosynthesis in Madin–Darby canine kidney cells. Glycobiology, 2006, 16, 326-332.	2.5	27
17	A Proteoglycan Undergoes Different Modifications en Route to the Apical and Basolateral Surfaces of Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry, 2005, 280, 29596-29603.	3.4	42
18	Intracellular proteoglycans. Biochemical Journal, 2004, 379, 217-227.	3.7	133

#	Article	IF	CITATION
19	Sulfation in the Golgi Lumen of Madin-Darby Canine Kidney Cells Is Inhibited by Brefeldin A and Depends on a Factor Present in the Cytoplasm and on Golgi Membranes. Journal of Biological Chemistry, 2002, 277, 36272-36279.	3.4	18
20	Effect of brefeldin A on heparan sulphate biosynthesis in Madin–Darby canine kidney cells. Biochemical Journal, 2002, 362, 359-366.	3.7	9
21	Cholesterol depletion reduces apical transport capacity in epithelial Madin–Darby canine kidney cells. Biochemical Journal, 2001, 357, 11-15.	3.7	26
22	Internalization and stepwise degradation of heparan sulfate proteoglycans in rat hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1541, 135-149.	4.1	25
23	Mammalian lectins and their relatives. Journal of Cell Science, 2001, 114, 2359-2359.	2.0	1
24	Lithocholic acid and sulphated lithocholic acid differ in the ability to promote matrix metalloproteinase secretion in the human colon cancer cell line CaCo-2. Biochemical Journal, 2000, 349, 189-193.	3.7	30
25	Selective Effects of Sodium Chlorate Treatment on the Sulfation of Heparan Sulfate. Journal of Biological Chemistry, 1999, 274, 36267-36273.	3.4	154
26	Sulphation of lithocholic acid in the colon-carcinoma cell line CaCo-2. Biochemical Journal, 1999, 343, 533-539.	3.7	13