Andrea Deaconescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/877427/publications.pdf

Version: 2024-02-01

45 papers 90 citations

5 h-index 1588992 8 g-index

45 all docs 45 docs citations

45 times ranked 50 citing authors

#	Article	IF	CITATIONS
1	Experimental Research on Polymer-Based Coaxial Sealing Systems of Hydraulic Cylinders for Small Displacement Velocities. Polymers, 2022, 14, 290.	4.5	2
2	Energy-to-Mass Ratio—A Novel Selection Criterion of Pneumatic Motors Used for the Actuation of Wearable Assistive Devices. Applied Sciences (Switzerland), 2022, 12, 6459.	2.5	3
3	Plane surface lapping technological processor. MATEC Web of Conferences, 2021, 343, 02002.	0.2	O
4	Mechanical Design of a Bioinspired Compliant Robotic Wrist Rehabilitation Equipment. Applied Sciences (Switzerland), 2021, 11, 1246.	2.5	2
5	Response Surface Methods Used for Optimization of Abrasive Waterjet Machining of the Stainless Steel X2 CrNiMo 17-12-2. Materials, 2021, 14, 2475.	2.9	10
6	Wrist Rehabilitation Equipment Based on the Fin-Ray® Effect. Advances in Intelligent Systems and Computing, 2020, , 393-401.	0.6	0
7	Compliance Adjustment of a Gripper System Designed for the Seizing of Objects of Modifiable Consistency. Journal of Physics: Conference Series, 2020, 1583, 012004.	0.4	O
8	Experimental Research on the Hysteretic Behaviour of Pressurized Artificial Muscles Made from Elastomers with Aramid Fibre Insertions. Actuators, 2020, 9, 83.	2.3	1
9	Developing an Analytical Model and Computing Tool for Optimizing Lapping Operations of Flat Objects Made of Alloyed Steels. Materials, 2020, 13, 1343.	2.9	12
10	Tribological Behavior of Hydraulic Cylinder Coaxial Sealing Systems Made from PTFE and PTFE Compounds. Polymers, 2020, 12, 155.	4.5	5
11	Pneumatic Equipment for Ankle Rehabilitation by Continuous Passive Motion. Mechanisms and Machine Science, 2020, , 13-21.	0.5	3
12	Compliance Adjustment of a Gripper System Designed for the Seizing of Objects of Modifiable Consistency. RECENT - REzultatele CErcetÄfrilor Noastre Tehnice, 2020, 21, 38-44.	0.1	0
13	Adjustable compliance soft gripper system. International Journal of Advanced Robotic Systems, 2019, 16, 172988141986658.	2.1	2
14	Technological Innovation in Medical Rehabilitation. , 2019, , .		0
15	Contact mechanics and friction in PTFE coaxial sealing systems. International Journal of Mechanics and Materials in Design, 2018, 14, 635-646.	3.0	6
16	Establishing the torsional rigidity of a rotation module responsible for the flexion-extension motions of the elbow. MATEC Web of Conferences, 2018, 178, 07006.	0.2	0
17	Pneumatic muscle actuated rotation modules for elbow rehabilitation equipment. IOP Conference Series: Materials Science and Engineering, 2018, 400, 022059.	0.6	O
18	Innovation by Analogy - Stages of New Gripper Systems Development. , 2018, , .		0

#	Article	IF	CITATIONS
19	Static analysis of a torsion motor generating flexion - extension motions of the elbow. MATEC Web of Conferences, 2018, 178, 07005.	0.2	O
20	Elbow joint rehabilitation equipment actuated by pneumatic muscles. MATEC Web of Conferences, 2017, 94, 07010.	0.2	1
21	Study of kerf geometry of multilayers materials in abrasive water jet cutting process. MATEC Web of Conferences, 2017, 94, 03001.	0.2	0
22	Decision Support System Based on Robust Design Methods. , 2017, , .		3
23	Pneumatic Muscle Actuated Rehabilitation Equipment of the Upper Limb Joints. IOP Conference Series: Materials Science and Engineering, 2017, 212, 012011.	0.6	0
24	Pneumatic muscle actuated parallel asymmetrical gripper system with one mobile jaw. MATEC Web of Conferences, 2017, 112, 05006.	0.2	0
25	Development of elbow rehabilitation equipment using pneumatic muscles. MATEC Web of Conferences, 2017, 121, 01017.	0.2	1
26	Comparison between two models of elbow rehabilitation equipment. MATEC Web of Conferences, 2017, 121, 01018.	0.2	0
27	Linear pneumatic motors – a comparative study. MATEC Web of Conferences, 2017, 112, 05007.	0.2	1
28	Pneumatic Muscle-Actuated Adjustable Compliant Gripper System for Assembly Operations. Strojniski Vestnik/Journal of Mechanical Engineering, 2017, 63, 225-234.	1.1	14
29	Pneumatic Muscle Actuated Compliant Gripper Systems. MATEC Web of Conferences, 2016, 70, 02006.	0.2	1
30	Particularities of Plane Surface Lapping. Applied Mechanics and Materials, 2015, 809-810, 9-14.	0.2	1
31	Pneumatic Muscle Actuated Rotation-Translation System. Applied Mechanics and Materials, 2014, 555, 129-134.	0.2	0
32	Continuous passive motion-based rehabilitation equipment for the recovery of lower limb bearing joints. International Journal of Biomechatronics and Biomedical Robotics, 2014, 3, 12.	0.2	1
33	Constructive and Functional Modelling of a Pneumatic Muscle Actuated Symmetric Gripper System with Two Mobile Jaws. Applied Mechanics and Materials, 2014, 657, 574-578.	0.2	0
34	Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles. International Journal of Advanced Robotic Systems, 2014, 11, 105.	2.1	7
35	Key Aspects in Addressing Friction in Coaxial Hydraulic Sealing Systems. Advanced Materials Research, 2013, 690-693, 1988-1991.	0.3	1
36	Analysis of the Impact of Robust Design on the Performance of a Plane Lapping System. Advanced Science Letters, 2013, 19, 27-31.	0.2	2

3

#	Article	IF	CITATIONS
37	Functional Characteristics of Pneumatic Muscle Actuated Rehabilitation Equipment for the Joints of the Inferior Limb. Advanced Science Letters, 2013, 19, 85-89.	0.2	O
38	Assistive Rehabilitation Device for the Joints of the Lower Limb. , 2011, , .		2
39	Bio-Inspired Pneumatic Muscle Actuated Robotic System. Lecture Notes in Electrical Engineering, 2011, , 27-40.	0.4	0
40	Robust design - A decision making tool in machining by lapping. , 2010, , .		1
41	Pneumatic Muscle Actuated Equipment for Continuous Passive Motion. , 2009, , .		4
42	Actuation by Pneumatic Muscles of a Parallel Asymmetric Gripper System. Applied Mechanics and Materials, 0, 548-549, 943-947.	0.2	1
43	Symmetrical Pneumatic Muscle Actuated Gripper System with Two Mobile Jaws. Applied Mechanics and Materials, 0, 541-542, 852-856.	0.2	2
44	Structural and kinematic analysis of elbow rehabilitation equipment. IOP Conference Series: Materials Science and Engineering, 0, 400, 022058.	0.6	1
45	Pneumatic Muscle Actuated Wrist Rehabilitation Equipment Based on the Fin Ray Principle. Strojniski Vestnik/Journal of Mechanical Engineering, 0, , .	1.1	О