
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8773964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	No saturation in the accumulation of alien species worldwide. Nature Communications, 2017, 8, 14435.	12.8	1,543
2	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	10.4	928
3	Understanding the long-term effects of species invasions. Trends in Ecology and Evolution, 2006, 21, 645-651.	8.7	828
4	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	5.6	648
5	PREDATOR FUNCTIONAL RESPONSES: DISCRIMINATING BETWEEN HANDLING AND DIGESTING PREY. Ecological Monographs, 2002, 72, 95-112.	5.4	510
6	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	7.1	416
7	Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecology Letters, 2010, 13, 947-958.	6.4	383
8	Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 2021, 27, 970-982.	9.5	327
9	From The Cover: Invasion success of vertebrates in Europe and North America. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7198-7202.	7.1	323
10	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 2017, 32, 464-474.	8.7	312
11	Defining the Impact of Nonâ€Native Species. Conservation Biology, 2014, 28, 1188-1194.	4.7	308
12	Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biological Reviews, 2004, 79, 337-349.	10.4	302
13	Usefulness of Bioclimatic Models for Studying Climate Change and Invasive Species. Annals of the New York Academy of Sciences, 2008, 1134, 1-24.	3.8	302
14	Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. BioScience, 2015, 65, 55-63.	4.9	301
15	Invasive species in Europe: ecology, status, and policy. Environmental Sciences Europe, 2011, 23, .	11.0	295
16	Support for major hypotheses in invasion biology is uneven and declining. NeoBiota, 0, 14, 1-20.	1.0	278
17	Determinants of vertebrate invasion success in Europe and North America. Global Change Biology, 2006, 12, 1608-1619.	9.5	246
18	Socioâ€economic impact classification of alien taxa (<scp>SEICAT</scp>). Methods in Ecology and Evolution, 2018, 9, 159-168.	5.2	244

#	Article	IF	CITATIONS
19	Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biological Invasions, 2014, 16, 735-753.	2.4	214
20	Invasion Biology: Specific Problems and Possible Solutions. Trends in Ecology and Evolution, 2017, 32, 13-22.	8.7	210
21	Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 2015, 65, 769-782.	4.9	202
22	The <i>Alliance for Freshwater Life</i> : A global call to unite efforts for freshwater biodiversity science and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1015-1022.	2.0	190
23	Framework and guidelines for implementing the proposed <scp>IUCN</scp> Environmental Impact Classification for Alien Taxa (<scp>EICAT</scp>). Diversity and Distributions, 2015, 21, 1360-1363.	4.1	184
24	A vision for global monitoring of biological invasions. Biological Conservation, 2017, 213, 295-308.	4.1	178
25	Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23643-23651.	7.1	173
26	Global patterns in threats to vertebrates by biological invasions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152454.	2.6	165
27	Which Taxa Are Alien? Criteria, Applications, and Uncertainties. BioScience, 2018, 68, 496-509.	4.9	153
28	A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 2020, 29, 978-991.	5.8	150
29	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	9.5	145
30	Boomâ€bust dynamics in biological invasions: towards an improved application of the concept. Ecology Letters, 2017, 20, 1337-1350.	6.4	143
31	Ecoâ€evolutionary experience in novel species interactions. Ecology Letters, 2015, 18, 236-245.	6.4	141
32	The enemy release hypothesis as a hierarchy of hypotheses. Oikos, 2014, 123, 741-750.	2.7	140
33	General hypotheses in invasion ecology. Diversity and Distributions, 2014, 20, 1229-1234.	4.1	129
34	Insights from modeling studies on how climate change affects invasive alien species geography. Ecology and Evolution, 2018, 8, 5688-5700.	1.9	126
35	Prey swarming: which predators become confused and why?. Animal Behaviour, 2007, 74, 387-393.	1.9	113
36	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	4.9	113

#	Article	IF	CITATIONS
37	The roles of body size and phylogeny in fast and slow life histories. Evolutionary Ecology, 2009, 23, 867-878.	1.2	98
38	Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2021, 29, 119-141.	4.5	98
39	Assessing patterns in introduction pathways of alien species by linking major invasion data bases. Journal of Applied Ecology, 2017, 54, 657-669.	4.0	96
40	A global agenda for advancing freshwater biodiversity research. Ecology Letters, 2022, 25, 255-263.	6.4	95
41	Plastic animals in cages: behavioural flexibility and responses to captivity. Animal Behaviour, 2013, 85, 1113-1126.	1.9	91
42	Functional responses can unify invasion ecology. Biological Invasions, 2017, 19, 1667-1672.	2.4	86
43	The role of species charisma in biological invasions. Frontiers in Ecology and the Environment, 2020, 18, 345-353.	4.0	81
44	A proposed unified framework to describe the management of biological invasions. Biological Invasions, 2020, 22, 2633-2645.	2.4	80
45	Species distribution models have limited spatial transferability for invasive species. Ecology Letters, 2020, 23, 1682-1692.	6.4	78
46	Structuring evidence for invasional meltdown: broad support but with biases and gaps. Biological Invasions, 2018, 20, 923-936.	2.4	77
47	Crypticity in Biological Invasions. Trends in Ecology and Evolution, 2019, 34, 291-302.	8.7	75
48	Density-dependent effects of prey defences. Oecologia, 2000, 123, 391-396.	2.0	74
49	Novel Organisms: Comparing Invasive Species, GMOs, and Emerging Pathogens. Ambio, 2013, 42, 541-548.	5.5	70
50	Flagship umbrella species needed for the conservation of overlooked aquatic biodiversity. Conservation Biology, 2017, 31, 481-485.	4.7	70
51	The role of eco-evolutionary experience inÂinvasionÂsuccess. NeoBiota, 0, 17, 57-74.	1.0	66
52	Across islands and continents, mammals are more successful invaders than birds. Diversity and Distributions, 2008, 14, 913-916.	4.1	65
53	Using Network Theory to Understand and Predict Biological Invasions. Trends in Ecology and Evolution, 2019, 34, 831-843.	8.7	63
54	Conceptual Frameworks and Methods for Advancing Invasion Ecology. Ambio, 2013, 42, 527-540.	5.5	62

#	Article	IF	CITATIONS
55	A spatial mismatch between invader impacts and research publications. Conservation Biology, 2016, 30, 230-232.	4.7	58
56	Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways?. NeoBiota, 0, 32, 1-20.	1.0	58
57	Spatial and topical imbalances in biodiversity research. PLoS ONE, 2018, 13, e0199327.	2.5	56
58	The island rule: An assessment of biases and research trends. Journal of Biogeography, 2018, 45, 289-303.	3.0	55
59	Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change. BioScience, 2019, 69, 888-899.	4.9	55
60	When carnivores are "full and lazy― Oecologia, 2007, 152, 357-364.	2.0	53
61	Long-term data on invaders: when the fox is away, the mink will play. Biological Invasions, 2010, 12, 633-641.	2.4	53
62	Decision tools for managing biological invasions: existing biases and future needs. Oryx, 2014, 48, 56-63.	1.0	52
63	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	5.6	52
64	Longâ€ŧerm population dynamics of dreissenid mussels (<i>Dreissena polymorpha</i> and) Tj ETQq0 0 0 rgBT	/Overlock 2	10 Tf 50 382 T
65	Drawing a map of invasion biology based on a network of hypotheses. Ecosphere, 2018, 9, e02146.	2.2	49
66	Twentyâ€five essential research questions to inform the protection and restoration of freshwater biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2632-2653.	2.0	49
67	Integrating biological invasions, climate change and phenotypic plasticity. Communicative and Integrative Biology, 2011, 4, 247-250.	1.4	48
68	Are threat status and invasion success two sides of the same coin?. Ecography, 2008, 31, 124-130.	4.5	47
69	Intraspecific Trait Variation Is Correlated with Establishment Success of Alien Mammals. American Naturalist, 2015, 185, 737-746.	2.1	47
70	Mortality and other determinants of bird divorce rate. Behavioral Ecology and Sociobiology, 2008, 63, 1-9.	1.4	46
71	Effects of predator confusion on functional responses. Oikos, 2005, 111, 547-555.	2.7	45
72	Consistency of impact assessment protocols for non-native species. NeoBiota, 0, 44, 1-25.	1.0	45

#	Article	IF	CITATIONS
73	InvasiBES: Understanding and managing the impacts of Invasive alien species on Biodiversity and Ecosystem Services. NeoBiota, 0, 50, 109-122.	1.0	45
74	Limiting similarity and Darwin's naturalization hypothesis: understanding the drivers of biotic resistance against invasive plant species. Oecologia, 2017, 183, 775-784.	2.0	43
75	Exact compensation of stream drift as an evolutionarily stable strategy. Oikos, 2001, 92, 522-530.	2.7	41
76	Expanding conservation culturomics and iEcology from terrestrial to aquatic realms. PLoS Biology, 2020, 18, e3000935.	5.6	41
77	Citizen science versus professional data collection: Comparison of approaches to mosquito monitoring in Germany. Journal of Applied Ecology, 2021, 58, 214-223.	4.0	40
78	Density-dependent effects of prey defenses and predator offenses. Journal of Theoretical Biology, 2006, 242, 900-907.	1.7	39
79	How partnerships end in guillemots Uria aalge: chance events, adaptive change, or forced divorce?. Behavioral Ecology, 2007, 18, 460-466.	2.2	37
80	Taxonomic bias and lack of crossâ€ŧaxonomic studies in invasion biology. Frontiers in Ecology and the Environment, 2012, 10, 349-350.	4.0	36
81	Need for routine tracking of biological invasions. Conservation Biology, 2020, 34, 1311-1314.	4.7	36
82	Knowledge in the dark: scientific challenges and ways forward. Facets, 2019, 4, 423-441.	2.4	34
83	Invasion success and threat status: two sides of a different coin?. Ecography, 2009, 32, 83-88.	4.5	33
84	Decomposing propagule pressure: the effects of propagule size and propagule frequency on invasion success. Oikos, 2014, 123, 441-450.	2.7	32
85	Predicting Herbivore Feeding Times. Ethology, 2005, 111, 187-206.	1.1	31
86	Increasing understanding of alien species through citizen science (Alien-CSI). Research Ideas and Outcomes, 0, 4, .	1.0	30
87	Do biodiversity and human impact influence the introduction or establishment of alien mammals?. Oikos, 2011, 120, 57-64.	2.7	26
88	Societal extinction of species. Trends in Ecology and Evolution, 2022, 37, 411-419.	8.7	26
89	Behavioral differences in an overâ€invasion scenario: marbled vs. spinyâ€cheek crayfish. Ecosphere, 2018, 9, e02385.	2.2	25
90	Distance to native climatic niche margins explains establishment success of alien mammals. Nature Communications, 2021, 12, 2353.	12.8	25

#	Article	IF	CITATIONS
91	Alternative futures for global biological invasions. Sustainability Science, 2021, 16, 1637-1650.	4.9	25
92	Characteristics of exotic ants in North America. NeoBiota, 0, 10, 47-64.	1.0	25
93	Scientific and Normative Foundations for the Valuation of Alien-Species Impacts: Thirteen Core Principles. BioScience, 0, , biw160.	4.9	24
94	Invasion Culturomics and iEcology. Conservation Biology, 2021, 35, 447-451.	4.7	24
95	Viewing Emerging Human Infectious Epidemics through the Lens of Invasion Biology. BioScience, 2021, 71, 722-740.	4.9	24
96	Predicting and testing functional responses: An example from a tardigrade–nematode system. Basic and Applied Ecology, 2008, 9, 145-151.	2.7	23
97	Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 2022, 103, e3719.	3.2	23
98	What makes the Asian bush mosquito Aedes japonicus japonicus feel comfortable in Germany? A fuzzy modelling approach. Parasites and Vectors, 2019, 12, 106.	2.5	22
99	Warming can enhance invasion success through asymmetries in energetic performance. Journal of Animal Ecology, 2016, 85, 419-426.	2.8	21
100	Mechanistic reconciliation of community and invasion ecology. Ecosphere, 2021, 12, e03359.	2.2	21
101	Managing invasive species amidst high uncertainty and novelty. Trends in Ecology and Evolution, 2013, 28, 255-256.	8.7	20
102	Threat-dependent traits of endangered frogs. Biological Conservation, 2017, 206, 310-313.	4.1	20
103	A multidimensional framework for measuring biotic novelty: How novel is a community?. Global Change Biology, 2020, 26, 4401-4417.	9.5	20
104	Phenotypic plasticity with instantaneous but delayed switches. Journal of Theoretical Biology, 2014, 340, 60-72.	1.7	19
105	How biological invasions affect animal behaviour: A global, crossâ€ŧaxonomic analysis. Journal of Animal Ecology, 2020, 89, 2531-2541.	2.8	19
106	Introducing AlienScenarios: a project to develop scenarios and models of biological invasions for the 21 st century. NeoBiota, 0, 45, 1-17.	1.0	17
107	A trophic interaction framework for identifying the invasive capacity of novel organisms. Methods in Ecology and Evolution, 2017, 8, 1786-1794.	5.2	16
108	Exceptional body size–extinction risk relations shed new light on the freshwater biodiversity crisis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10263-E10264.	7.1	16

#	Article	IF	CITATIONS
109	The Hierarchy-of-Hypotheses Approach: A Synthesis Method for Enhancing Theory Development in Ecology and Evolution. BioScience, 2021, 71, 337-349.	4.9	16
110	A DIRECT, EXPERIMENTAL TEST OF RESOURCE VS. CONSUMER DEPENDENCE: COMMENT. Ecology, 2007, 88, 1600-1602.	3.2	15
111	Trophic ecology of invasive marbled and spiny-cheek crayfish populations. Biological Invasions, 2020, 22, 3339-3356.	2.4	15
112	What factors increase the vulnerability of native birds to the impacts of alien birds?. Ecography, 2021, 44, 727-739.	4.5	15
113	Drivers of spatio-temporal variation in mosquito submissions to the citizen science project â€~Mückenatlas'. Scientific Reports, 2021, 11, 1356.	3.3	15
114	Tracking Batrachochytrium dendrobatidis Infection Across the Globe. EcoHealth, 2020, 17, 270-279.	2.0	14
115	A citation-based map of concepts in invasion biology. NeoBiota, 0, 47, 23-42.	1.0	14
116	Application of the Socio-Economic Impact Classification for Alien Taxa (SEICAT) to a global assessment of alien bird impacts. NeoBiota, 0, 62, 123-142.	1.0	14
117	Key drivers structuring rotifer communities in ponds: insights into an agricultural landscape. Journal of Plankton Research, 2021, 43, 396-412.	1.8	13
118	Predator Functional Responses: Discriminating between Handling and Digesting Prey. Ecological Monographs, 2002, 72, 95.	5.4	13
119	Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology, 2022, 110, 916-934.	4.0	13
120	Collegiality versus Competition: How Metrics Shape Scientific Communities. BioScience, 2013, 63, 155-156.	4.9	12
121	Towards an open, zoomable atlas for invasion science and beyond. NeoBiota, 0, 68, 5-18.	1.0	12
122	Some reflections on current invasion science and perspectives for an exciting future. NeoBiota, 0, 68, 79-100.	1.0	12
123	Do cancer stem cells exist? A pilot study combining a systematic review with the hierarchy-of-hypotheses approach. PLoS ONE, 2019, 14, e0225898.	2.5	11
124	Grassland allergenicity increases with urbanisation and plant invasions. Ambio, 2022, 51, 2261-2277.	5.5	11
125	Fictional responses from Vonesh et al Biological Invasions, 2017, 19, 1677-1678.	2.4	10
126	Can Daphnia lumholtzi invade European lakes?. NeoBiota, 0, 16, 39-57.	1.0	10

#	Article	IF	CITATIONS
127	An assessment of the environmental and socio-economic impacts of alien rabbits and hares. Ambio, 2022, 51, 1314-1329.	5.5	10
128	Urban affinity and its associated traits: A global analysis of bats. Global Change Biology, 2022, 28, 5667-5682.	9.5	10
129	Machine learning with the hierarchyâ€ofâ€hypotheses (HoH) approach discovers novel pattern in studies on biological invasions. Research Synthesis Methods, 2020, 11, 66-73.	8.7	9
130	Can data from native mosquitoes support determining invasive species habitats? Modelling the climatic niche of Aedes japonicus japonicus (Diptera, Culicidae) in Germany. Parasitology Research, 2020, 119, 31-42.	1.6	9
131	Context-dependent differences in the functional responses of conspecific native and non-native crayfishes. NeoBiota, 0, 54, 71-88.	1.0	9
132	Buzzing Homes: Using Citizen Science Data to Explore the Effects of Urbanization on Indoor Mosquito Communities. Insects, 2021, 12, 374.	2.2	8
133	Towards a mechanistic understanding of individualâ€level functional responses: Invasive crayfish as model organisms. Freshwater Biology, 2020, 65, 657-673.	2.4	7
134	Are exotic species red queens?. Ethology Ecology and Evolution, 2014, 26, 101-111.	1.4	6
135	How media presence triggers participation in citizen science—The case of the mosquito monitoring project â€~Mückenatlasâ€~. PLoS ONE, 2022, 17, e0262850.	2.5	6
136	Mapping and assessing the knowledge base of ecological restoration. Restoration Ecology, 0, , .	2.9	6
137	Urban biotic homogenization: Approaches and knowledge gaps. Ecological Applications, 2022, 32, .	3.8	6
138	Chapter Eight. Invasion Biology and Parasitic Infections. , 2010, , 179-204.		5
139	Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff. BioScience, 2020, 70, 112-114.	4.9	5
140	SKG4EOSC - Scholarly Knowledge Graphs for EOSC: Establishing a backbone of knowledge graphs for FAIR Scholarly Information in EOSC. Research Ideas and Outcomes, 0, 8, .	1.0	5
141	Across islands and continents, mammals are more successful invaders than birds (Reply to) Tj ETQq1 1 0.7843	14 rgBT /O 4.1	verlgck 10 Ti
142	Time and energy constraints: reply to Nolet and Klaassen (2005). Oikos, 2006, 114, 553-554.	2.7	3
143	Comparing factors associated with total and dead sooty shearwater bycatch in New Zealand trawl fisheries. Biological Conservation, 2011, 144, 1859-1865.	4.1	3
144	Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach. Environmental Management, 2016, 58, 465-475.	2.7	3

#	Article	IF	CITATIONS
145	Invasion Science: Looking Forward Rather Than Revisiting Old Ground – A Reply to Zenni et al Trends in Ecology and Evolution, 2017, 32, 809-810.	8.7	3
146	Make Open Access Publishing Fair and Transparent!. BioScience, 2020, 70, 201-204.	4.9	3
147	Predation. , 2022, , 207-221.		3
148	Towards a Core Ontology for Hierarchies of Hypotheses in Invasion Biology. Lecture Notes in Computer Science, 2020, , 3-8.	1.3	3
149	Open Access journals need to become first choice, in invasion ecology and beyond. NeoBiota, 0, 52, 1-8.	1.0	3
150	Reply to Stroud: Invasive amphibians and reptiles from islands indeed show higher niche expansion than mainland species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
151	Clear Language for Ecosystem Management in the Anthropocene: A Reply to Bridgewater and Hemming. BioScience, 2020, 70, 374-376.	4.9	2
152	Biological Invasions: Introduction, Establishment and Spread. , 2021, , .		2
153	Diversifying Skills and Promoting Teamwork in Science. Eos, 2016, 97, .	0.1	2
154	r-Strategists/K-Strategists., 2019,, 193-201.		1
155	Biological Invasions: Impact and Management. , 2022, , 368-381.		1
156	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	1
157	Correction: Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2022, 30, 174-174.	4.5	1
158	Avoiding an Ecological Midlife Crisis: Remembering the Joy. Bulletin of the Ecological Society of America, 2016, 97, 28-30.	0.2	0
159	Biological Invasions: Case Studies. , 2021, , .		0
160	Von r-Strategen und K-Strategen sowie schnellen und langsamen Lebenszyklen. , 2011, , 95-113.		0