Esteban Hasson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8773269/publications.pdf

Version: 2024-02-01

74 1,741 24 36
papers citations h-index g-index

75 75 75 1175
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Spatial and host related genomic variation in partially sympatric cactophagous moth species. Molecular Ecology, 2022, 31, 356-371.	3.9	4
2	Divergent metabolomic profiles of cold-exposed mature and immature females of tropical versus temperate Drosophila species. Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2021, 258, 110995.	1.8	7
3	Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control. Ecology and Evolution, 2020, 10, 10463-10480.	1.9	9
4	Host Plant Adaptation in Cactophilic Species of the <i>Drosophila buzzatii </i> Cluster: Fitness and Transcriptomics. Journal of Heredity, 2019, 110, 46-57.	2.4	22
5	Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS ONE, 2019, 14, e0220366.	2.5	14
6	What does mitogenomics tell us about the evolutionary history of the Drosophila buzzatii cluster (repleta group)?. PLoS ONE, 2019, 14, e0220676.	2.5	12
7	The influence of developmental environment on courtship song in cactophilic <i>Drosophila</i> Journal of Evolutionary Biology, 2018, 31, 957-967.	1.7	5
8	Experimental Evolution of Alkaloid Tolerance in Sibling Drosophila Species with Different Degrees of Specialization. Evolutionary Biology, 2018, 45, 170-181.	1.1	11
9	Rapid divergence of courtship song in the face of neutral genetic homogeneity in the cactophilic fly Drosophila buzzatii. Biological Journal of the Linnean Society, 2018, 125, 321-332.	1.6	3
10	Cactus–fungi interactions mediate host preference in cactophilic Drosophila (Diptera:) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 382 Td (I
11	Contrasting Plasticity in Ovariole Number Induced by A Dietary Effect of the Host Plants between Cactophilic Drosophila Species. Insects, 2016, 7, 21.	2.2	4
12	Transcriptome modulation during host shift is driven by secondary metabolites in desert <i><scp>D</scp>rosophila</i> . Molecular Ecology, 2016, 25, 4534-4550.	3.9	40
13	Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster. PLoS ONE, 2016, 11, e0160069.	2.5	6
14	Biodiversity of cactophilic microorganisms in western Argentina: community structure and species composition in the necroses of two sympatric cactus hosts. Fungal Ecology, 2015, 13, 167-180.	1.6	15
15	Differences in Tolerance to Host Cactus Alkaloids in Drosophila koepferae and D. buzzatii. PLoS ONE, 2014, 9, e88370.	2.5	33
16	Oviposition Site Preference for Natural Breeding Sites in <i>Drosophila</i> melanogaster (Diptera:) Tj ETQq0 0 C	rgBT /Ove 2.5	erlock 10 Tf 50 8
17	An alkaloid fraction extracted from the cactus <i>Trichocereus terscheckii</i> affects fitness in the cactophilic fly <i>Drosophila buzzatii</i> (Diptera: Drosophilidae). Biological Journal of the Linnean Society, 2013, 109, 342-353.	1.6	22
18	Inter and intraspecific variation in female remating propensity in the cactophilic sibling species Drosophila buzzatii and D. koepferae. Journal of Insect Physiology, 2013, 59, 569-576.	2.0	5

#	Article	IF	CITATIONS
19	Rapid Divergent Evolution of Male Genitalia Among Populations of Drosophila buzzatii. Evolutionary Biology, 2013, 40, 395-407.	1.1	16
20	Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster. Evolutionary Biology, 2013, 40, 601-612.	1.1	21
21	Positive Selection in Nucleoporins Challenges Constraints on Early Expressed Genes in Drosophila Development. Genome Biology and Evolution, 2013, 5, 2231-2241.	2.5	11
22	Evolutionary Genomics of Genes Involved in Olfactory Behavior in the <i>Drosophila melanogaster </i> Species Group. Evolutionary Bioinformatics, 2012, 8, EBO.S8484.	1.2	24
23	Mating success depends on rearing substrate in cactophilic Drosophila. Evolutionary Ecology, 2012, 26, 733-743.	1.2	13
24	Oviposition and performance in natural hosts in cactophilic Drosophila. Evolutionary Ecology, 2012, 26, 975-990.	1.2	27
25	Oviposition site preferences and performance in natural resources in the human commensalsDrosophila melanogasterandD. simulans. Fly, 2011, 5, 102-109.	1.7	10
26	A quantitative genetic study of starvation resistance at different geographic scales in natural populations of <i>Drosophila melanogaster </i> . Genetical Research, 2010, 92, 253-259.	0.9	15
27	Ontogenetic stage-dependent effect of temperature on developmental and metabolic rates in a holometabolous insect. Journal of Insect Physiology, 2010, 56, 1679-1684.	2.0	33
28	Geographic Patterns of Inversion Polymorphism in the Second Chromosome of the Cactophilic <i>Drosophila buzzatii</i> from Northeastern Argentina. Journal of Insect Science, 2010, 10, 1-11.	1.5	12
29	Stage-Specific Effects of Candidate Heterochronic Genes on Variation in Developmental Time along an Altitudinal Cline of Drosophila melanogaster. PLoS ONE, 2010, 5, e11229.	2.5	18
30	Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato. Genetica, 2009, 136, 13-25.	1.1	14
31	A study of wing morphology and fluctuating asymmetry in interspecific hybrids between Drosophila buzzatii and D. koepferae. Genetica, 2008, 133, 1-11.	1.1	18
32	Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction. BMC Developmental Biology, 2008, 8, 78.	2.1	47
33	A comparative study of competitive ability between two cactophilic species in their natural hosts. Austral Ecology, 2008, 33, 663-671.	1.5	6
34	Viability and Developmental Time in Cactophilic <i>Drosophila gouveai</i> and <i>Drosophila antonietae</i> (Diptera: Drosophilidae) Are Dependent on the Cactus Host. Annals of the Entomological Society of America, 2007, 100, 490-496.	2.5	15
35	BEHAVIORAL DIFFERENTIATION IN OVIPOSITION ACTIVITY IN DROSOPHILA BUZZATII FROM HIGHLAND AND LOWLAND POPULATIONS IN ARGENTINA: PLASTICITY OR THERMAL ADAPTATION?. Evolution; International Journal of Organic Evolution, 2007, 55, 738-747.	2.3	7
36	Evolution of male genitalia: environmental and genetic factors affect genital morphology in two Drosophila sibling species and their hybrids. BMC Evolutionary Biology, 2007, 7, 77.	3.2	58

#	Article	lF	Citations
37	Evolutionary history of the Asr gene family. Gene, 2006, 378, 74-83.	2.2	7 5
38	Longevity differences among lines artificially selected for developmental time and wing length in Drosophila buzzatii. Genetica, 2006, 127, 199-206.	1.1	4
39	Correlations among Size-Related Traits Affected by Chromosome Inversions in Drosophila Buzzatii: The Comparison within and Across Environments. Hereditas, 2004, 126, 225-231.	1.4	7
40	The Effect of Polymorphic Inversions on Body Size in Two Natural Populations of Drosophila Buzzatii from Argentina. Hereditas, 2004, 126, 233-237.	1.4	12
41	Sexual Selection Related to Developmental Stability in Drosophila Buzzatii. Hereditas, 2004, 128, 115-119.	1.4	10
42	Temporal and Spatial Variation of Inversion Polymorphism in Two Natural Populations of Drosophila Buzzatii. Hereditas, 2004, 131, 93-99.	1.4	8
43	Developmental Time and Thorax Length Differences Between the Cactophilic Species Drosophila Buzzatii and D. Koepferae Reared in Different Natural Hosts. Evolutionary Ecology, 2004, 18, 203-214.	1.2	16
44	COII: a useful tool for inferring phylogenetic relationships among New World monkeys (Primates,) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
45	The Evolutionary History of Drosophila buzzatii. XXXV. Inversion Polymorphism and Nucleotide Variability in Different Regions of the Second Chromosome. Molecular Biology and Evolution, 2003, 20, 931-944.	8.9	39
46	Adaptive Evolution of the Water Stress-Induced Gene Asr2 in Lycopersicon Species Dwelling in Arid Habitats. Molecular Biology and Evolution, 2003, 20, 1955-1962.	8.9	44
47	Transpecific Polymorphisms in an Inversion Linked Esterase Locus in Drosophila buzzatii. Molecular Biology and Evolution, 2003, 20, 410-423.	8.9	29
48	Comparative Molecular Population Genetics of the Xdh Locus in the Cactophilic Sibling Species Drosophila buzzatii and D. koepferae. Molecular Biology and Evolution, 2003, 21, 141-152.	8.9	23
49	DIRECT AND CORRELATED RESPONSES TO ARTIFICIAL SELECTION ON DEVELOPMENTAL TIME AND WING LENGTH IN DROSOPHILA BUZZATII. Evolution; International Journal of Organic Evolution, 2002, 56, 2541.	2.3	2
50	DIRECT AND CORRELATED RESPONSES TO ARTIFICIAL SELECTION ON DEVELOPMENTAL TIME AND WING LENGTH IN DROSOPHILA BUZZATII. Evolution; International Journal of Organic Evolution, 2002, 56, 2541-2547.	2.3	39
51	Description of the cytochrome c oxidase subunit II gene in some genera of New World monkeys (primates, Platyrrhini). Genetica, 2002, 114, 253-267.	1.1	15
52	OVIPOSITION ACCEPTANCE AND FECUNDITY SCHEDULE IN THE CACTOPHILIC SIBLING SPECIES DROSOPHILA BUZZATII AND D. KOEPFERAE ON THEIR NATURAL HOSTS. Evolution; International Journal of Organic Evolution, 2001, 55, 2615-2619.	2.3	39
53	OVIPOSITION ACCEPTANCE AND FECUNDITY SCHEDULE IN THE CACTOPHILIC SIBLING SPECIES DROSOPHILA BUZZATII AND D. KOEPFERAE ON THEIR NATURAL HOSTS. Evolution; International Journal of Organic Evolution, 2001, 55, 2615.	2.3	2
54	Negative genetic correlation between traits of the Drosophila head, and interspecific divergence in head shape. Heredity, 2000, 85, 177-183.	2.6	20

#	Article	IF	CITATIONS
55	THE ROLE OF THE USE OF DIFFERENT HOST PLANTS IN THE MAINTENANCE OF THE INVERSION POLYMORPHISM IN THE CACTOPHILIC DROSOPHILA BUZZATII. Evolution; International Journal of Organic Evolution, 2000, 54, 1295-1302.	2.3	31
56	THE ROLE OF THE USE OF DIFFERENT HOST PLANTS IN THE MAINTENANCE OF THE INVERSION POLYMORPHISM IN THE CACTOPHILIC DROSOPHILA BUZZATII. Evolution; International Journal of Organic Evolution, 2000, 54, 1295.	2.3	33
57	Oviposition preference and life history traits in cactophilic Drosophila koepferae and D. buzzatii in association with their natural hosts. Evolutionary Ecology, 1999, 13, 173-190.	1.2	58
58	Inversion Polymorphism, Longevity, and Body Size in a Natural Population of Drosophila buzzatii. Evolution; International Journal of Organic Evolution, 1999, 53, 612.	2.3	13
59	INVERSION POLYMORPHISM, LONGEVITY, AND BODY SIZE IN A NATURAL POPULATION OF (i>DROSOPHILA BUZZATII (i>. Evolution; International Journal of Organic Evolution, 1999, 53, 612-620.	2.3	31
60	Nucleotide variation in the triosephosphate isomerase (Tpi) locus of Drosophila melanogaster and Drosophila simulans. Molecular Biology and Evolution, 1998, 15, 756-769.	8.9	65
61	Correlations among size-related traits are affected by chromosome inversions in an adaptive polymorphism in Drosophila buzzatii. Heredity, 1997, 79, 585-590.	2.6	9
62	Genetic and phenotypic correlations among size-related traits, and heritability variation between body parts in Drosophila buzzatii. Genetica, 1997, 101, 131-139.	1.1	13
63	Correlations among size-related traits are affected by chromosome inversions in an adaptive polymorphism in Drosophila buzzatii. Heredity, 1997, 79, 585-590.	2.6	1
64	The evolutionary history of Drosophila buzzatii. XXXIII. Are Opuntia hosts a selective factor for the inversion polymorphism?. Heredity, 1996, 77, 500-508.	2.6	16
65	Contrasting Histories of Three Gene Regions Associated With <i>In(3L)Payne</i> of <i>Drosophila melanogaster</i> . Genetics, 1996, 144, 1565-1575.	2.9	89
66	An adaptive chromosomal polymorphism affecting size-related traits, and longevity selection in a natural population of Drosophila buzzatii. Genetica, 1995, 96, 285-291.	1.1	35
67	The evolutionary history of Drosophila buzzatti. XXVI. Macrogeographic patterns of inversion polymorphism in New World populations. Journal of Evolutionary Biology, 1995, 8, 369-384.	1.7	63
68	Courtship success and multivariate analysis of sexual selection on morphometric traits in Drosophila buzzatii (Diptera: Drosophilidae). Journal of Insect Behavior, 1994, 8, 219-229.	0.7	44
69	The evolutionary history of Drosophila buzzatii XXVII. Genetica, 1993, 92, 61-65.	1.1	40
70	The evolutionary history of Drosophila buzzatii. XXIV. Second chromosome inversions have different average effects on thorax length. Heredity, 1992, 68, 557-563.	2.6	50
71	The evolutionary history of Drosophila buzzatii. XVI. Fitness component analysis in an original natural population from Argentina. Journal of Evolutionary Biology, 1991, 4, 209-225.	1.7	38
72	Drosophila koepferae: a New Member of the Drosophila serido (Diptera: Drosophilidae) Superspecies Taxon1. Annals of the Entomological Society of America, 1988, 81, 380-385.	2.5	63

#	Article	IF	CITATIONS
73	Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drosophila. Biological Journal of the Linnean Society, 0, 95, 233-245.	1.6	46
74	Effects of breeding resource and environmental temperature on adult locomotor activity in cactophilic <i>Drosophila</i> . Entomologia Experimentalis Et Applicata, 0, , .	1.4	1