Xiaohua Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8772655/publications.pdf

Version: 2024-02-01

		147801	1	149698	
60	3,912	31		56	
papers	citations	h-index		g-index	
60	60	60		3541	
00	00	00		2241	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	IL-35 Is a Novel Responsive Anti-inflammatory Cytokine $\hat{a}\in$ A New System of Categorizing Anti-inflammatory Cytokines. PLoS ONE, 2012, 7, e33628.	2.5	230
2	Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells. Circulation Research, 2016, 118, 1525-1539.	4.5	198
3	Early Hyperlipidemia Promotes Endothelial Activation via a Caspase-1-Sirtuin 1 Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 804-816.	2.4	197
4	Vascular Endothelial Cells and Innate Immunity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e138-e152.	2.4	191
5	Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1090-1100.	2.4	187
6	Hyperhomocysteinemia accelerates atherosclerosis in cystathionine \hat{l}^2 -synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood, 2003, 101, 3901-3907.	1.4	172
7	Hyperhomocysteinemia Decreases Circulating High-Density Lipoprotein by Inhibiting Apolipoprotein A-I Protein Synthesis and Enhancing HDL Cholesterol Clearance. Circulation Research, 2006, 99, 598-606.	4.5	162
8	ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biology, 2020, 37, 101696.	9.0	154
9	Hyperhomocystinemia Impairs Endothelial Function and eNOS Activity via PKC Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2515-2521.	2.4	141
10	Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin Agene. Blood, 2007, 110, 3648-3655.	1.4	130
11	Hyperhomocysteinemia Promotes Inflammatory Monocyte Generation and Accelerates Atherosclerosis in Transgenic Cystathionine β-Synthase–Deficient Mice. Circulation, 2009, 120, 1893-1902.	1.6	129
12	Severe Hyperhomocysteinemia Promotes Bone Marrow–Derived and Resident Inflammatory Monocyte Differentiation and Atherosclerosis in LDLr/CBS-Deficient Mice. Circulation Research, 2012, 111, 37-49.	4.5	123
13	MicroRNA-155 Deficiency Leads to Decreased Atherosclerosis, Increased White Adipose Tissue Obesity, and Non-alcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2017, 292, 1267-1287.	3.4	107
14	Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway. Journal of Biological Chemistry, 2015, 290, 19307-19318.	3.4	105
15	Hyperhomocysteinemia Potentiates Hyperglycemia-Induced Inflammatory Monocyte Differentiation and Atherosclerosis. Diabetes, 2014, 63, 4275-4290.	0.6	104
16	IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14). Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 599-609.	2.4	93
17	Interleukin-17A Promotes Aortic Endothelial Cell Activation via Transcriptionally and Post-translationally Activating p38 Mitogen-activated Protein Kinase (MAPK) Pathway. Journal of Biological Chemistry, 2016, 291, 4939-4954.	3.4	92
18	Chronic Kidney Disease Induces Inflammatory CD40 ⁺ Monocyte Differentiation via Homocysteine Elevation and DNA Hypomethylation. Circulation Research, 2016, 119, 1226-1241.	4.5	88

#	Article	IF	CITATIONS
19	Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. Journal of Biological Chemistry, 2018, 293, 11033-11045.	3.4	79
20	Hyperhomocysteinemia and Hyperglycemia Induce and Potentiate Endothelial Dysfunction via \hat{l} 4-Calpain Activation. Diabetes, 2015, 64, 947-959.	0.6	66
21	Hyperhomocysteinemia impairs endothelium-derived hyperpolarizing factor–mediated vasorelaxation in transgenic cystathionine beta synthase–deficient mice. Blood, 2011, 118, 1998-2006.	1.4	64
22	Increased acetylation of H3K14 in the genomic regions that encode trained immunity enzymes in lysophosphatidylcholine-activated human aortic endothelial cells $\hat{a} \in \text{``Novel qualification markers for chronic disease risk factors and conditional DAMPs. Redox Biology, 2019, 24, 101221.}$	9.0	64
23	End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease progression. Redox Biology, 2020, 34, 101460.	9.0	62
24	Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers., 2021, 220, 107715.		62
25	Ly6C ⁺ Inflammatory Monocyte Differentiation Partially Mediates Hyperhomocysteinemia-Induced Vascular Dysfunction in Type 2 Diabetic db/db Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2097-2119.	2.4	61
26	Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biology, 2020, 28, 101373.	9.0	61
27	Hyperhomocysteinemia inhibits post-injury reendothelialization in mice. Cardiovascular Research, 2006, 69, 253-262.	3.8	60
28	Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood, 2002, 99, 939-945.	1.4	59
29	Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1032-1046.	2.4	56
30	Caspase-1 mediates hyperlipidemia-weakened progenitor cell vessel repair. Frontiers in Bioscience - Landmark, 2016, 21, 178-191.	3.0	54
31	Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Frontiers in Immunology, 2021, 12, 653110.	4.8	43
32	Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide. Redox Biology, 2018, 16, 215-225.	9.0	41
33	Hyperhomocysteinemia suppresses bone marrow CD34 ⁺ /VEGF receptor 2 ⁺ cells and inhibits progenitor cell mobilization and homing to injured vasculature—a role of l²1â€integrin in progenitor cell migration and adhesion. FASEB Journal, 2015, 29, 3085-3099.	0.5	40
34	Differential Regulation of Homocysteine Transport in Vascular Endothelial and Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1976-1983.	2.4	33
35	Liver Ischemia Reperfusion Injury, Enhanced by Trained Immunity, Is Attenuated in Caspase 1/Caspase 11 Double Gene Knockout Mice. Pathogens, 2020, 9, 879.	2.8	33
36	Increasing Upstream Chromatin Long–Range Interactions May Favor Induction of Circular RNAs in LysoPC-Activated Human Aortic Endothelial Cells. Frontiers in Physiology, 2019, 10, 433.	2.8	30

#	Article	IF	CITATIONS
37	Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood, 2002, 99, 939-45.	1.4	30
38	Tissue Treg Secretomes and Transcription Factors Shared With Stem Cells Contribute to a Treg Niche to Maintain Treg-Ness With 80% Innate Immune Pathways, and Functions of Immunosuppression and Tissue Repair. Frontiers in Immunology, 2020, 11, 632239.	4.8	29
39	Approaching Inflammation Paradoxes—Proinflammatory Cytokine Blockages Induce Inflammatory Regulators. Frontiers in Immunology, 2020, 11, 554301.	4.8	28
40	IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. JCl Insight, 2021, 6, .	5.0	26
41	Structural evidence of anti-atherogenic microRNAs. Frontiers in Bioscience - Landmark, 2011, 16, 3133.	3.0	23
42	29 m6A-RNA Methylation (Epitranscriptomic) Regulators Are Regulated in 41 Diseases including Atherosclerosis and Tumors Potentially via ROS Regulation $\hat{a} \in 102$ Transcriptomic Dataset Analyses. Journal of Immunology Research, 2022, 2022, 1-42.	2,2	19
43	Canonical Secretomes, Innate Immune Caspase-1-, 4/11-Gasdermin D Non-Canonical Secretomes and Exosomes May Contribute to Maintain Treg-Ness for Treg Immunosuppression, Tissue Repair and Modulate Anti-Tumor Immunity via ROS Pathways. Frontiers in Immunology, 2021, 12, 678201.	4.8	17
44	Molecular processes mediating hyperhomocysteinemia-induced metabolic reprogramming, redox regulation and growth inhibition in endothelial cells. Redox Biology, 2021, 45, 102018.	9.0	16
45	Procaspase-1 patrolled to the nucleus of proatherogenic lipid LPC-activated human aortic endothelial cells induces ROS promoter CYP1B1 and strong inflammation. Redox Biology, 2021, 47, 102142.	9.0	16
46	Hyperlipidemia May Synergize with Hypomethylation in Establishing Trained Immunity and Promoting Inflammation in NASH and NAFLD. Journal of Immunology Research, 2021, 2021, 1-35.	2.2	16
47	MicroRNAs and other mechanisms regulate interleukin-17 cytokines and receptors. Frontiers in Bioscience - Elite, 2012, E4, 1478.	1.8	15
48	Novel Knowledge-Based Transcriptomic Profiling of Lipid Lysophosphatidylinositol-Induced Endothelial Cell Activation. Frontiers in Cardiovascular Medicine, 2021, 8, 773473.	2.4	15
49	Interleukin 35 Delays Hindlimb Ischemia-Induced Angiogenesis Through Regulating ROS-Extracellular Matrix but Spares Later Regenerative Angiogenesis. Frontiers in Immunology, 2020, 11, 595813.	4.8	13
50	Monocyte Adhesion Assays for Detecting Endothelial Cell Activation in Vascular Inflammation and Atherosclerosis. Methods in Molecular Biology, 2022, 2419, 169-182.	0.9	13
51	A Novel Subset of CD95+ Pro-Inflammatory Macrophages Overcome miR155 Deficiency and May Serve as a Switch From Metabolically Healthy Obesity to Metabolically Unhealthy Obesity. Frontiers in Immunology, 2020, 11, 619951.	4.8	12
52	Organelle Crosstalk Regulators Are Regulated in Diseases, Tumors, and Regulatory T Cells: Novel Classification of Organelle Crosstalk Regulators. Frontiers in Cardiovascular Medicine, 2021, 8, 713170.	2.4	11
53	Aorta in Pathologies May Function as an Immune Organ by Upregulating Secretomes for Immune and Vascular Cell Activation, Differentiation and Trans-Differentiation—Early Secretomes may Serve as Drivers for Trained Immunity. Frontiers in Immunology, 2022, 13, 858256.	4.8	10
54	Ultrasound May Suppress Tumor Growth, Inhibit Inflammation, and Establish Tolerogenesis by Remodeling Innatome via Pathways of ROS, Immune Checkpoints, Cytokines, and Trained Immunity/Tolerance. Journal of Immunology Research, 2021, 2021, 1-33.	2.2	9

XIAOHUA JIANG

#	Article	IF	CITATION
55	Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood, 2002, 99, 939-945.	1.4	9
56	Hyperhomocysteinemia promotes vascular remodeling in vein graph in mice. Frontiers in Bioscience - Landmark, 2014, 19, 958.	3.0	7
57	Chronic Exposure to the Combination of Cigarette Smoke and Morphine Decreases CD4+ Regulatory T Cell Numbers by Reprogramming the Treg Cell Transcriptome. Frontiers in Immunology, 2022, 13, 887681.	4.8	7
58	Regulation of Homocysteine Transport in Vascular Cells Blood, 2006, 108, 3926-3926.	1.4	0
59	Threeâ€Tier Model for Inflammasome Expression and a New Concept of Inflammation Privilege. FASEB Journal, 2010, 24, 476.8.	0.5	0
60	Proatherogenic Inflamatory mRNAs Have structural Features for Being Regulated by MicroRNAs. Blood, 2011, 118, 5316-5316.	1.4	0