Kristina Haase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770612/publications.pdf

Version: 2024-02-01

586496 620720 1,410 29 16 26 citations g-index h-index papers 34 34 34 2500 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries. Biomaterials, 2022, 280, 121248.	5.7	23
2	Seasonal changes in membrane structure and excitability in retinal neurons of goldfish (<i>Carassius) Tj ETQq0 (</i>	OrgBT/0	Overlock 10 Tf
3	A novel 3D vascular assay for evaluating angiogenesis across porous membranes. Biomaterials, 2021, 268, 120592.	5.7	14
4	Engineering Breast Cancer On-chip—Moving Toward Subtype Specific Models. Frontiers in Bioengineering and Biotechnology, 2021, 9, 694218.	2.0	18
5	Modelling the Human Placental Interface In Vitro—A Review. Micromachines, 2021, 12, 884.	1.4	19
6	Classical and Non-classical Fibrosis Phenotypes Are Revealed by Lung and Cardiac Like Microvascular Tissues On-Chip. Frontiers in Physiology, 2021, 12, 735915.	1.3	13
7	Once upon a dish: engineering multicellular systems. Development (Cambridge), 2020, 147, .	1.2	10
8	Endothelial Regulation of Drug Transport in a 3D Vascularized Tumor Model. Advanced Functional Materials, 2020, 30, 2002444.	7.8	78
9	Cysteine cathepsins are altered by flow within an engineered <i>in vitro</i> microvascular niche. APL Bioengineering, 2020, 4, 046102.	3.3	7
10	Pericytes Contribute to Dysfunction in a Human 3D Model of Placental Microvasculature through VEGFâ€Angâ€√Tie2 Signaling. Advanced Science, 2019, 6, 1900878.	5.6	65
11	An on-chip model of protein paracellular and transcellular permeability in the microcirculation. Biomaterials, 2019, 212, 115-125.	5.7	80
12	Strategies for controlling egress of therapeutic cells from hydrogel microcapsules. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 612-624.	1.3	12
13	The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials, 2019, 198, 180-193.	5.7	110
14	Computational and Experimental Approaches to Cellular and Subcellular Tracking at the Nanoscale., 2018,, 333-362.		0
15	Advances in on-chip vascularization. Regenerative Medicine, 2017, 12, 285-302.	0.8	125
16	Rapid dynamics of cell-shape recovery in response to local deformations. Soft Matter, 2017, 13, 567-577.	1.2	3
17	Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner. Scientific Reports, 2016, 6, 21300.	1.6	85
18	Simultaneous optical and mechanical probes to investigate complex cellular responses to physical cues. , 2015 , , .		0

#	Article	IF	CITATIONS
19	Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society Interface, 2015, 12, 20140970.	1.5	288
20	Apple Derived Cellulose Scaffolds for 3D Mammalian Cell Culture. PLoS ONE, 2014, 9, e97835.	1.1	162
21	Mechanical Cues Direct Focal Adhesion Dynamics. Progress in Molecular Biology and Translational Science, 2014, 126, 103-134.	0.9	19
22	Microtubules mediate changes in membrane cortical elasticity during contractile activation. Experimental Cell Research, 2014, 322, 21-29.	1.2	19
23	The Role of the Cortex and the Cytoplasm in Deformations of the Plasma Membrane. Biophysical Journal, 2014, 106, 361a.	0.2	0
24	Mechanical cues in cellular signalling and communication. Cell and Tissue Research, 2013, 352, 77-94.	1.5	68
25	Resiliency of the plasma membrane and actin cortex to largeâ€scale deformation. Cytoskeleton, 2013, 70, 494-514.	1.0	36
26	Prediction of stress shielding around an orthopedic screw: Using stress and strain energy density as mechanical stimuli. Computers in Biology and Medicine, 2013, 43, 1748-1757.	3.9	61
27	The role of the actin cortex in maintaining cell shape. Communicative and Integrative Biology, 2013, 6, e26714.	0.6	19
28	Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. Journal of Cell Science, 2012, 125, 603-613.	1.2	56
29	A Discussion on Plating Factors that Affect Stress Shielding Using Finite Element Analysis. Journal of Biomechanical Science and Engineering, 2010, 5, 129-141.	0.1	14