William R Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 2000, 406, 735-738.	27.8	1,251
2	Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature, 1999, 402, 79-83.	27.8	692
3	The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12420-12425.	7.1	656
4	A Novel Mycolic Acid Cyclopropane Synthetase Is Required for Cording, Persistence, and Virulence of Mycobacterium tuberculosis. Molecular Cell, 2000, 5, 717-727.	9.7	599
5	Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology (United) Tj ETQq1 1 0	.7 8. 8314 r	g&BBAOverloc
6	The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature Medicine, 1997, 3, 567-570.	30.7	405
7	A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nature Medicine, 2002, 8, 1171-1174.	30.7	341
8	Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature, 1987, 327, 532-535.	27.8	319
9	Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. ELife, 2015, 4, e06416.	6.0	280
10	Attenuation of and Protection Induced by a Leucine Auxotroph of Mycobacterium tuberculosis. Infection and Immunity, 2000, 68, 2888-2898.	2.2	267
11	Microbial Pathogenesis of Mycobacterium tuberculosis: Dawn of a Discipline. Cell, 2001, 104, 477-485.	28.9	262
12	Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4453-4458.	7.1	259
13	Inactivation of the <i>inhA</i> -Encoded Fatty Acid Synthase II (FASII) Enoyl-Acyl Carrier Protein Reductase Induces Accumulation of the FASI End Products and Cell Lysis of <i>Mycobacterium smegmatis</i> . Journal of Bacteriology, 2000, 182, 4059-4067.	2.2	251
14	Evidence that Mycobacterial PE_PGRS Proteins Are Cell Surface Constituents That Influence Interactions with Other Cells. Infection and Immunity, 2001, 69, 7326-7333.	2.2	243
15	Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature Medicine, 2000, 6, 1043-1047.	30.7	232
16	Resistance to Isoniazid and Ethionamide in <i>Mycobacterium tuberculosis</i> : Genes, Mutations, and Causalities. Microbiology Spectrum, 2014, 2, MGM2-0014-2013.	3.0	204
17	Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5157-5162.	7.1	194
18	A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nature Medicine, 2011, 17, 1261-1268.	30.7	192

#	Article	IF	CITATIONS
19	TheMycobacterium tuberculosis iniAgene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Molecular Microbiology, 2005, 55, 1829-1840.	2.5	179
20	Crystal Structures of Mycolic Acid Cyclopropane Synthases from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2002, 277, 11559-11569.	3.4	175
21	Mycobacterium tuberculosis ΔRD1 ΔpanCD: A safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine, 2006, 24, 6309-6320.	3.8	172
22	Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. Journal of Clinical Investigation, 2006, 116, 1660-1667.	8.2	171
23	Auxotrophic vaccines for tuberculosis. Nature Medicine, 1996, 2, 334-337.	30.7	166
24	Separable roles for <i>Mycobacterium tuberculosis</i> ESX-3 effectors in iron acquisition and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E348-57.	7.1	166
25	Enhanced respiration prevents drug tolerance and drug resistance in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4495-4500.	7.1	157
26	Mycothiol biosynthesis is essential for ethionamide susceptibility in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2008, 69, 1316-1329.	2.5	155
27	An inclusive Research Education Community (iREC): Impact of the SEA-PHACES program on research outcomes and student learning. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13531-13536.	7.1	155
28	Genome Analysis of Multi- and Extensively-Drug-Resistant Tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE, 2009, 4, e7778.	2.5	144
29	Protection Elicited by a Double Leucine and Pantothenate Auxotroph of Mycobacterium tuberculosis in Guinea Pigs. Infection and Immunity, 2004, 72, 3031-3037.	2.2	143
30	Genetic Manipulation of <i>Mycobacterium tuberculosis</i> . Current Protocols in Microbiology, 2007, 6, Unit 10A.2.	6.5	138
31	Specialized Transduction Designed for Precise High-Throughput Unmarked Deletions in Mycobacterium tuberculosis. MBio, 2014, 5, e01245-14.	4.1	135
32	Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nature Microbiology, 2016, 1, 16133.	13.3	133
33	Essential roles of methionine and <i>S</i> -adenosylmethionine in the autarkic lifestyle of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10008-10013.	7.1	130
34	The Mycobacterium tuberculosis cmaA2 Gene Encodes a Mycolic Acid trans-Cyclopropane Synthetase. Journal of Biological Chemistry, 2001, 276, 2228-2233.	3.4	128
35	Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence b bThe precise locations of all of the insertions examined in this study can be found as supplementary data in Microbiology Online (http://mic.sgmjournals.org) Microbiology (United Kingdom), 2002, 148, 2975-2986.	1.8	128
36	Origins of Combination Therapy for Tuberculosis: Lessons for Future Antimicrobial Development and Application. MBio, 2017, 8, .	4.1	125

#	Article	IF	CITATIONS
37	CD4 ⁺ T-cell–independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5636-44.	7.1	123
38	An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11479-11484.	7.1	117
39	Agingâ€related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell, 2015, 14, 582-594.	6.7	106
40	The Isoniazid Paradigm of Killing, Resistance, and Persistence in Mycobacterium tuberculosis. Journal of Molecular Biology, 2019, 431, 3450-3461.	4.2	98
41	Arginine-deprivation–induced oxidative damage sterilizes <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9779-9784.	7.1	97
42	Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease. ELife, 2015, 4, .	6.0	96
43	Fluoromycobacteriophages for Rapid, Specific, and Sensitive Antibiotic Susceptibility Testing of Mycobacterium tuberculosis. PLoS ONE, 2009, 4, e4870.	2.5	94
44	High-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1666-1677.	7.1	91
45	Succinate Dehydrogenase is the Regulator of Respiration in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004510.	4.7	87
46	Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nature Microbiology, 2017, 2, 16232.	13.3	81
47	Adoptive Transfer of Phosphoantigen-Specific γδT Cell Subset Attenuates <i>Mycobacterium tuberculosis</i> Infection in Nonhuman Primates. Journal of Immunology, 2017, 198, 4753-4763.	0.8	80
48	The <i>Mycobacterium tuberculosis</i> capsule: a cell structure with key implications in pathogenesis. Biochemical Journal, 2019, 476, 1995-2016.	3.7	74
49	The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3lketoacyl reductase that fails to confer isoniazid resistance. Microbiology (United Kingdom), 1998, 144, 2697-2704.	1.8	73
50	A Mycobacterium tuberculosis Cytochrome <i>bd</i> Oxidase Mutant Is Hypersensitive to Bedaquiline. MBio, 2014, 5, e01275-14.	4.1	73
51	Essentiality of Succinate Dehydrogenase in Mycobacterium smegmatis and Its Role in the Generation of the Membrane Potential Under Hypoxia. MBio, 2014, 5, .	4.1	70
52	Ï• ² GFP10, a High-Intensity Fluorophage, Enables Detection and Rapid Drug Susceptibility Testing of Mycobacterium tuberculosis Directly from Sputum Samples. Journal of Clinical Microbiology, 2012, 50, 1362-1369.	3.9	69
53	Rifamycin action on RNA polymerase in antibiotic-tolerant <i>Mycobacterium tuberculosis</i> results in differentially detectable populations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4832-E4840.	7.1	69
54	Characterization of Mycobacterium smegmatis Expressing the Mycobacterium tuberculosis Fatty Acid Synthase I (fas1) Gene. Journal of Bacteriology, 2004, 186, 4051-4055.	2.2	68

#	Article	IF	CITATIONS
55	Deletion of a dehydratase important for intracellular growth and cording renders rough <i>Mycobacterium abscessus</i> avirulent. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4228-37.	7.1	67
56	Dual-Reporter Mycobacteriophages (Φ ² DRMs) Reveal Preexisting Mycobacterium tuberculosis Persistent Cells in Human Sputum. MBio, 2016, 7, .	4.1	67
57	Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004115.	4.7	63
58	Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6371-6378.	7.1	63
59	Genetic methods for deciphering virulence determinants of Mycobacterium tuberculosis. Methods in Enzymology, 2002, 358, 67-99.	1.0	59
60	Noncanonical SMC protein in <i>Mycobacterium smegmatis</i> restricts maintenance of <i>Mycobacterium fortuitum</i> plasmids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13264-13271.	7.1	58
61	Plasticity of <i>Mycobacterium tuberculosis</i> NADH dehydrogenases and their role in virulence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1599-1604.	7.1	58
62	HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates. JCI Insight, 2016, 1, .	5.0	56
63	Structural characterization of muropeptides from <i>Chlamydia trachomatis</i> peptidoglycan by mass spectrometry resolves "chlamydial anomalyâ€. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11660-11665.	7.1	55
64	Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagnostic Microbiology and Infectious Disease, 2003, 45, 53-61.	1.8	54
65	Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. Journal of Medical Microbiology, 2003, 52, 557-561.	1.8	52
66	Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. MBio, 2016, 7, .	4.1	52
67	Herpes Simplex Virus Type 2 Glycoprotein H Interacts with Integrin αvβ3 To Facilitate Viral Entry and Calcium Signaling in Human Genital Tract Epithelial Cells. Journal of Virology, 2014, 88, 10026-10038.	3.4	51
68	Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis. Microbiology (United Kingdom), 2007, 153, 513-520.	1.8	50
69	Rational Design of Biosafety Level 2-Approved, Multidrug-Resistant Strains of Mycobacterium tuberculosis through Nutrient Auxotrophy. MBio, 2018, 9, .	4.1	50
70	Defining a temporal order of genetic requirements for development of mycobacterial biofilms. Molecular Microbiology, 2017, 105, 794-809.	2.5	48
71	Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection. Nature Communications, 2019, 10, 4215.	12.8	48
72	Interleukin-17A as a Biomarker for Bovine Tuberculosis. Vaccine Journal, 2016, 23, 168-180.	3.1	47

#	Article	IF	CITATIONS
73	Metabolic Network for the Biosynthesis of Intra- and Extracellular α-Glucans Required for Virulence of Mycobacterium tuberculosis. PLoS Pathogens, 2016, 12, e1005768.	4.7	46
74	In vitro culture medium influences the vaccine efficacy of Mycobacterium bovis BCG. Vaccine, 2012, 30, 1038-1049.	3.8	44
75	Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. Angewandte Chemie - International Edition, 2018, 57, 3478-3482.	13.8	42
76	Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the Mycobacterium Neighborhood. MBio, 2014, 5, e02145.	4.1	39
77	Vitamin C Potentiates the Killing of Mycobacterium tuberculosis by the First-Line Tuberculosis Drugs Isoniazid and Rifampin in Mice. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	39
78	Protection Elicited by Two Glutamine Auxotrophs of Mycobacterium tuberculosis and In Vivo Growth Phenotypes of the Four Unique Glutamine Synthetase Mutants in a Murine Model. Infection and Immunity, 2006, 74, 6491-6495.	2.2	37
79	Increased TNF-α/IFN-γ/IL-2 and Decreased TNF-α/IFN-γ Production by Central Memory T Cells Are Associated with Protective Responses against Bovine Tuberculosis Following BCG Vaccination. Frontiers in Immunology, 2016, 7, 421.	4.8	37
80	Determinants of the Inhibition of DprE1 and CYP2C9 by Antitubercular Thiophenes. Angewandte Chemie - International Edition, 2017, 56, 13011-13015.	13.8	36
81	Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. Vaccine Journal, 2017, 24, .	3.1	36
82	Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 7060-7069.	3.4	35
83	Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice. PLoS Pathogens, 2016, 12, e1006043.	4.7	35
84	Defects in glycopeptidolipid biosynthesis confer phage 13 resistance in Mycobacterium smegmatis. Microbiology (United Kingdom), 2009, 155, 4050-4057.	1.8	34
85	Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis. Journal of Biological Chemistry, 2016, 291, 22315-22326.	3.4	34
86	An HSV-2 single-cycle candidate vaccine deleted in glycoprotein D, ΔgD-2, protects male mice from lethal skin challenge with clinical isolates of HSV-1 and HSV-2. Journal of Infectious Diseases, 2018, 217, 754-758.	4.0	33
87	Genome-wide mutational biases fuel transcriptional diversity in the Mycobacterium tuberculosis complex. Nature Communications, 2019, 10, 3994.	12.8	33
88	Infect and Inject: How Mycobacterium tuberculosis Exploits Its Major Virulence-Associated Type VII Secretion System, ESX-1. Microbiology Spectrum, 2019, 7, .	3.0	33
89	Laboratory Maintenance of Mycobacterium tuberculosis. Current Protocols in Microbiology, 2007, 6, Unit 10A.1.	6.5	32
90	High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nature Immunology, 2020, 21, 86-100.	14.5	32

#	Article	IF	CITATIONS
91	Fluorescent Reporter DS6A Mycobacteriophages Reveal Unique Variations in Infectibility and Phage Production in Mycobacteria. Journal of Bacteriology, 2016, 198, 3220-3232.	2.2	31
92	The Complete Genome Sequence of the Emerging Pathogen Mycobacterium haemophilum Explains Its Unique Culture Requirements. MBio, 2015, 6, e01313-15.	4.1	30
93	Vaccine-Elicited Mucosal and Systemic Antibody Responses Are Associated with Reduced Simian Immunodeficiency Viremia in Infant Rhesus Macaques. Journal of Virology, 2016, 90, 7285-7302.	3.4	30
94	The Type of Growth Medium Affects the Presence of a Mycobacterial Capsule and Is Associated With Differences in Protective Efficacy of BCG Vaccination Against <i>Mycobacterium tuberculosis</i> . Journal of Infectious Diseases, 2016, 214, 426-437.	4.0	29
95	Reporter Phage and Breath Tests: Emerging Phenotypic Assays for Diagnosing Active Tuberculosis, Antibiotic Resistance, and Treatment Efficacy. Journal of Infectious Diseases, 2011, 204, S1142-S1150.	4.0	28
96	Evolution of a thienopyrimidine antitubercular relying on medicinal chemistry and metabolomics insights. Tetrahedron Letters, 2015, 56, 3246-3250.	1.4	27
97	Isolation and Analysis of Mycobacterium tuberculosis Mycolic Acids. Current Protocols in Microbiology, 2007, 5, Unit 10A.3.	6.5	24
98	Improving Mycobacterium bovis Bacillus Calmette-Guèrin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells. PLoS ONE, 2014, 9, e108383.	2.5	24
99	A Novel Reporter Phage To Detect Tuberculosis and Rifampin Resistance in a High-HIV-Burden Population. Journal of Clinical Microbiology, 2015, 53, 2188-2194.	3.9	24
100	Drivers and sites of diversity in the DNA adenine methylomes of 93 Mycobacterium tuberculosis complex clinical isolates. ELife, 2020, 9, .	6.0	24
101	Sterilization of Mycobacterium tuberculosis Erdman Samples by Antimicrobial Fixation in a Biosafety Level 3 Laboratory. Journal of Clinical Microbiology, 2001, 39, 769-771.	3.9	22
102	Genetic Dissection of Mycobacterial Biofilms. Methods in Molecular Biology, 2015, 1285, 215-226.	0.9	22
103	A Nonribosomal Peptide Synthase Gene Driving Virulence in Mycobacterium tuberculosis. MSphere, 2018, 3, .	2.9	20
104	Helicobacter pylori Infections in the Bronx, New York: Surveying Antibiotic Susceptibility and Strain Lineage by Whole-Genome Sequencing. Journal of Clinical Microbiology, 2020, 58, .	3.9	20
105	Efficient Allelic Exchange and Transposon Mutagenesis in Mycobacterium avium by Specialized Transduction. Applied and Environmental Microbiology, 2003, 69, 5039-5044.	3.1	19
106	A neonatal oral Mycobacterium tuberculosis-SIV prime/intramuscular MVA-SIV boost combination vaccine induces both SIV and Mtb-specific immune responses in infant macaques. Trials in Vaccinology, 2013, 2, 53-63.	1.2	19
107	Investigation of the mycobacterial enzyme HsaD as a potential novel target for antiâ€tubercular agents using a fragmentâ€based drug design approach. British Journal of Pharmacology, 2017, 174, 2209-2224. 	5.4	19
108	Reduced Virulence of an Extensively Drug-Resistant Outbreak Strain of Mycobacterium tuberculosis in a Murine Model. PLoS ONE, 2014, 9, e94953.	2.5	19

#	Article	IF	CITATIONS
109	The immunogenicity of recombinant Mycobacterium smegmatis bearing BCG genes. Microbiology (United Kingdom), 1995, 141, 1239-1245.	1.8	18
110	Gene Transfer in <i>Mycobacterium tuberculosis</i> : Shuttle Phasmids to Enlightenment. Microbiology Spectrum, 2014, 2, .	3.0	17
111	Loss of phenotypic inheritance associated with <i>ydcl</i> mutation leads to increased frequency of small, slow persisters in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4152-4157.	7.1	17
112	Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. Vaccine Journal, 2015, 22, 726-741.	3.1	16
113	A fragment-based approach to assess the ligandability of ArgB, ArgC, ArgD and ArgF in the L-arginine biosynthetic pathway of Mycobacterium tuberculosis. Computational and Structural Biotechnology Journal, 2021, 19, 3491-3506.	4.1	16
114	Postprimary Tuberculosis and Macrophage Necrosis: Is There a Big ConNECtion?. MBio, 2016, 7, e01589-15.	4.1	15
115	US6 Gene Deletion in Herpes Simplex Virus Type 2 Enhances Dendritic Cell Function and T Cell Activation. Frontiers in Immunology, 2017, 8, 1523.	4.8	15
116	Early Detection of Emergent Extensively Drug-Resistant Tuberculosis by Flow Cytometry-Based Phenotyping and Whole-Genome Sequencing. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
117	Recombinant Mycobacterium bovis Bacillus Calmette-Guérin Vectors Prime for Strong Cellular Responses to Simian Immunodeficiency Virus Gag in Rhesus Macaques. Vaccine Journal, 2014, 21, 1385-1395.	3.1	13
118	Gene Deletions in Mycobacterium bovis BCG Stimulate Increased CD8 ⁺ T Cell Responses. Infection and Immunity, 2014, 82, 5317-5326.	2.2	13
119	Identification of Mycobacterial RpIJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4 ⁺ T Cells. Infection and Immunity, 2017, 85, .	2.2	13
120	Addressing the Metabolic Stability of Antituberculars through Machine Learning. ACS Medicinal Chemistry Letters, 2017, 8, 1099-1104.	2.8	13
121	Molecular Genetic Strategies for Identifying Virulence Determinants of <i>Mycobacterium tuberculosis</i> ., 0, , 253-268.		13
122	HVEM signaling promotes protective antibody-dependent cellular cytotoxicity (ADCC) vaccine responses to herpes simplex viruses. Science Immunology, 2020, 5, .	11.9	12
123	Infection of Mice with Aerosolized Mycobacterium tuberculosis : Use of a Nose-Only Apparatus for Delivery of Low Doses of Inocula and Design of an Ultrasafe Facility. Applied and Environmental Microbiology, 2002, 68, 4646-4649.	3.1	11
124	3-(Phenethylamino)demethyl(oxy)aaptamine as an anti-dormant mycobacterial substance: Isolation, evaluation and total synthesis. Tetrahedron Letters, 2020, 61, 151924.	1.4	11
125	A Single-Cycle Glycoprotein D Deletion Viral Vaccine Candidate, ΔgD-2, Elicits Polyfunctional Antibodies That Protect against Ocular Herpes Simplex Virus. Journal of Virology, 2020, 94, .	3.4	11
126	ESX1-dependent fractalkine mediates chemotaxis and Mycobacterium tuberculosis infection in humans. Tuberculosis, 2014, 94, 262-270.	1.9	10

#	Article	IF	CITATIONS
127	Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154. Journal of Immunology, 2017, 199, 2596-2606.	0.8	10
128	BCG-Prime and boost with Esx-5 secretion system deletion mutant leads to better protection against clinical strains of Mycobacterium tuberculosis. Vaccine, 2020, 38, 7156-7165.	3.8	10
129	Multiple genetic paths including massive gene amplification allow <i>Mycobacterium tuberculosis</i> to overcome loss of ESX-3 secretion system substrates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
130	Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility. Journal of Bacteriology, 2020, 202, .	2.2	8
131	Identification of Mycobacterial Ribosomal Proteins as Targets for CD4 ⁺ T Cells That Enhance Protective Immunity in Tuberculosis. Infection and Immunity, 2018, 86, .	2.2	7
132	Infect and Inject. , 2020, , 113-126.		7
133	The Promises and Limitations of <i>N</i> -Acetylcysteine as a Potentiator of First-Line and Second-Line Tuberculosis Drugs. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	7
134	Transposon Mutagenesis in Mycobacteria Using Conditionally Replicating Mycobacteriophages. , 2001, 54, 043-057.		6
135	Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. Angewandte Chemie, 2018, 130, 3536-3540.	2.0	6
136	Suppression of Th1 Priming by TLR2 Agonists during Cutaneous Immunization Is Mediated by Recruited CCR2+ Monocytes. Journal of Immunology, 2018, 201, 3604-3616.	0.8	5
137	Leprosy vaccine. Nature, 1994, 368, 579-579.	27.8	4
138	Induction of high levels of protective immunity in mice after vaccination using dendritic cells infected with auxotrophic mutants of Mycobacterium tuberculosis. Immunology Letters, 2006, 103, 196-199.	2.5	4
139	Measurements of the in vitro anti-mycobacterial activity of ivermectin are method-dependent. Journal of Antimicrobial Chemotherapy, 2014, 69, 1723-1724.	3.0	4
140	Synthesis and biological activity of alkynoic acids derivatives against mycobacteria. Chemistry and Physics of Lipids, 2016, 194, 125-138.	3.2	4
141	Exacting Edward Jenner's revenge: The quest for a new tuberculosis vaccine. Science Translational Medicine, 2019, 11, .	12.4	4
142	Generation of IL-3–Secreting CD4+ T Cells by Microbial Challenge at Skin and Mucosal Barriers. ImmunoHorizons, 2019, 3, 161-171.	1.8	4
143	Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette–Guérin Vaccination to Improve Antiviral Antibody Responses. Journal of Immunology, 2020, 205, 425-437.	0.8	3
144	Characterization of Large Deletion Mutants of Mycobacterium tuberculosis Selected for Isoniazid Resistance. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	3

#	Article	IF	CITATIONS
145	Elimination of PknL and MSMEG_4242 in Mycobacterium smegmatis alters the character of the outer cell envelope and selects for mutations in Lsr2. Cell Surface, 2021, 7, 100060.	3.0	3
146	A recombinant herpes virus expressing influenza hemagglutinin confers protection and induces antibody-dependent cellular cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2110714118.	7.1	2
147	Analyses of Mycobacterium tuberculosis Proteins. Current Protocols in Microbiology, 2007, 6, Unit 10A.4.	6.5	1
148	2165. Helicobacter pylori Infections in the Bronx, New York: Whole-Genome Sequencing for Rapid Genotypic Susceptibility Testing. Open Forum Infectious Diseases, 2019, 6, S734-S735.	0.9	1
149	Sterilization by Adaptive Immunity of a Conditionally Persistent Mutant of Mycobacterium tuberculosis. MBio, 2021, 12, .	4.1	1
150	Vaccine-induced Intestinal and Salivary IgA Correlates with Reduced Viremia in Orally-challenged Neonatal Macaques. AIDS Research and Human Retroviruses, 2014, 30, A242-A243.	1.1	0
151	Measurements of the in vitro anti-mycobacterial activity of ivermectin are method-dependentauthors' response. Journal of Antimicrobial Chemotherapy, 2014, 69, 1725-1726.	3.0	0
152	Herpes Simplex Virus (HSV)-2 Candidate Vaccine Virus Deleted in Glycoprotein D (ΔgD-2) Elicits High-Titer Immunoglobulin (Ig)G2 Antibodies With Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) Activity, Protects Mice From Skin and Vaginal Challenge With Clinical Isolates of HSV-1 and HSV-2, and Prevents the Establishment of Latency. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
153	Establishing Models of Herpes Simplex Virus Type 2 Superinfection of Herpes Simplex Virus Type 1 Seropositive Mice to Test The Efficacy of a Novel Vaccine. Open Forum Infectious Diseases, 2017, 4, S309-S309.	0.9	0
154	Reply to Yew et al., "Vitamin C and Mycobacterium tuberculosis Persisters― Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	0
155	Alteration of Metabolic Program by whiB6 Enhances Tuberculosis Persistence. FASEB Journal, 2012, 26, 222.3.	0.5	0