
Andrew P Hinck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing biomolecular structure, dynamics, and function using hydrogen exchange. Archives of Biochemistry and Biophysics, 2022, , 109185.	3.0	0
2	Convergent evolution of a parasite-encoded complement control protein-scaffold to mimic binding of mammalian TGF-1² to its receptors, TI²RI and TI²RII. Journal of Biological Chemistry, 2022, 298, 101994.	3.4	12
3	In Search of "Hepatic Factorâ€: Lack of Evidence for ALK1 Ligands BMP9 and BMP10. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 249-251.	5.6	6
4	Distinct intramolecular interactions regulate autoinhibition of vinculin binding in αT-catenin and αE-catenin. Journal of Biological Chemistry, 2021, 296, 100582.	3.4	5
5	Novel TGFβ Inhibitors Ameliorate Oral Squamous Cell Carcinoma Progression and Improve the Antitumor Immune Response of Anti–PD-L1 Immunotherapy. Molecular Cancer Therapeutics, 2021, 20, 1102-1111.	4.1	11
6	TGFBR3L is an inhibin B co-receptor that regulates female fertility. Science Advances, 2021, 7, eabl4391.	10.3	21
7	Structure and Role of BCOR PUFD in Noncanonical PRC1 Assembly and Disease. Biochemistry, 2020, 59, 2718-2728.	2.5	12
8	Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15505-15513.	7.1	46
9	Structural Adaptation in Its Orphan Domain Engenders Betaglycan with an Alternate Mode of Growth Factor Binding Relative to Endoglin. Structure, 2019, 27, 1427-1442.e4.	3.3	12
10	Structural biology of betaglycan and endoglin, membrane-bound co-receptors of the TGF-beta family. Experimental Biology and Medicine, 2019, 244, 1547-1558.	2.4	43
11	TGF-β2 uses the concave surface of its extended finger region to bind betaglycan's ZP domain via three residues specific to TGF-β and inhibin-α. Journal of Biological Chemistry, 2019, 294, 3065-3080.	3.4	15
12	A Novel TGFβ Trap Blocks Chemotherapeutics-Induced TGFβ1 Signaling and Enhances Their Anticancer Activity in Gynecologic Cancers. Clinical Cancer Research, 2018, 24, 2780-2793.	7.0	45
13	TGF-Î ² uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. ELife, 2018, 7, .	6.0	119
14	Structure-guided engineering of TGF-βs for the development of novel inhibitors and probing mechanism. Bioorganic and Medicinal Chemistry, 2018, 26, 5239-5246.	3.0	6
15	An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling. Journal of Biological Chemistry, 2017, 292, 7173-7188.	3.4	34
16	Structural basis for potency differences between GDF8 and GDF11. BMC Biology, 2017, 15, 19.	3.8	90
17	Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nature Methods, 2017, 14, 399-402.	19.0	158
18	Methyl-Labeling Assisted NMR Structure Determination of a 66 KDA Growth Factor-Receptor Complex. Biophysical Journal, 2017, 112, 487a-488a.	0.5	0

ANDREW P HINCK

#	Article	IF	CITATIONS
19	ALK1 signaling in development and disease: new paradigms. Cellular and Molecular Life Sciences, 2017, 74, 4539-4560.	5.4	76
20	A structurally distinct TGF-β mimic from an intestinal helminth parasite potently induces regulatory T cells. Nature Communications, 2017, 8, 1741.	12.8	159
21	An introduction to the special issue on biomolecular NMR. Archives of Biochemistry and Biophysics, 2017, 628, 1-2.	3.0	0
22	A novel highly potent trivalent TGF-β receptor trap inhibits early-stage tumorigenesis and tumor cell invasion in murine Pten-deficient prostate glands. Oncotarget, 2016, 7, 86087-86102.	1.8	32
23	Binding Properties of the Transforming Growth Factor-β Coreceptor Betaglycan: Proposed Mechanism for Potentiation of Receptor Complex Assembly and Signaling. Biochemistry, 2016, 55, 6880-6896.	2.5	33
24	Structural Biology and Evolution of the TGF-β Family. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022103.	5.5	267
25	Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-Î ² Superfamily. Methods in Molecular Biology, 2016, 1344, 63-92.	0.9	25
26	D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nature Communications, 2015, 6, 7768.	12.8	64
27	Nuclear Magnetic Resonance Structural Mapping Reveals Promiscuous Interactions between Clathrin-Box Motif Sequences and the N-Terminal Domain of the Clathrin Heavy Chain. Biochemistry, 2015, 54, 2571-2580.	2.5	19
28	Divergence(s) in nodal signaling between aggressive melanoma and embryonic stem cells. International Journal of Cancer, 2015, 136, E242-51.	5.1	13
29	The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers. Biochemistry, 2015, 54, 5167-5174.	2.5	14
30	Biological Activity Differences between TGF-β1 and TGF-β3 Correlate with Differences in the Rigidity and Arrangement of Their Component Monomers. Biochemistry, 2014, 53, 5737-5749.	2.5	54
31	The Solution Structure of the Regulatory Domain of Tyrosine Hydroxylase. Journal of Molecular Biology, 2014, 426, 1483-1497.	4.2	47
32	TGF-β Antagonists: Same Knot, but Different Hold. Structure, 2013, 21, 1269-1270.	3.3	7
33	Evaluation of competing J domain:Hsp70 complex models in light of existing mutational and NMR data. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E734; author reply E735.	7.1	13
34	The Growth-Suppressive Function of the Polycomb Group Protein Polyhomeotic Is Mediated by Polymerization of Its Sterile Alpha Motif (SAM) Domain. Journal of Biological Chemistry, 2012, 287, 8702-8713.	3.4	54
35	Human Polyhomeotic Homolog 3 (PHC3) Sterile Alpha Motif (SAM) Linker Allows Open-Ended Polymerization of PHC3 SAM. Biochemistry, 2012, 51, 5379-5386.	2.5	10
36	Structure of the Alk1 Extracellular Domain and Characterization of Its Bone Morphogenetic Protein (BMP) Binding Properties. Biochemistry, 2012, 51, 6328-6341.	2.5	35

ANDREW P HINCK

#	Article	IF	CITATIONS
37	Structural studies of the TGFâ€Î²s and their receptors – insights into evolution of the TGFâ€Î² superfamily. FEBS Letters, 2012, 586, 1860-1870.	2.8	185
38	Blockade of Autocrine TGF-β Signaling Inhibits Stem Cell Phenotype, Survival, and Metastasis of Murine Breast Cancer Cells. Journal of Stem Cell Research & Therapy, 2012, 02, 1-8.	0.3	38
39	Identification of Nucleic Acid Binding Residues in the FCS Domain of the Polycomb Group Protein Polyhomeotic. Biochemistry, 2011, 50, 4998-5007.	2.5	11
40	Direct evidence for a phenylalanine site in the regulatory domain of phenylalanine hydroxylase. Archives of Biochemistry and Biophysics, 2011, 505, 250-255.	3.0	37
41	The TβR-I Pre-Helix Extension Is Structurally Ordered in the Unbound Form and Its Flanking Prolines Are Essential for Binding. Journal of Molecular Biology, 2011, 412, 601-618.	4.2	20
42	Structures of TGF-β Receptor Complexes: Implications for Function and Therapeutic Intervention Using Ligand Traps. Current Pharmaceutical Biotechnology, 2011, 12, 2081-2098.	1.6	18
43	TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs. EMBO Journal, 2011, 30, 1263-1276.	7.8	98
44	Class II Cytokine Common Receptors: Something Old, Something New. Structure, 2010, 18, 551-552.	3.3	0
45	Polycomb Group Targeting through Different Binding Partners of RING1B C-Terminal Domain. Structure, 2010, 18, 966-975.	3.3	81
46	Ternary Complex of Transforming Growth Factor-β1 Reveals Isoform-specific Ligand Recognition and Receptor Recruitment in the Superfamily. Journal of Biological Chemistry, 2010, 285, 14806-14814.	3.4	135
47	Dynamic Interactions between Clathrin and Locally Structured Elements in a Disordered Protein Mediate Clathrin Lattice Assembly. Journal of Molecular Biology, 2010, 404, 274-290.	4.2	46
48	Peptide ligands that use a novel binding site to target both TGF-Î ² receptors. Molecular BioSystems, 2010, 6, 2392.	2.9	25
49	Betaglycan has Two Independent Domains Required for High Affinity TGF-β Binding: Proteolytic Cleavage Separates the Domains and Inactivates the Neutralizing Activity of the Soluble Receptor. Biochemistry, 2009, 48, 11755-11765.	2.5	42
50	Characterization of the SRP68/72 interface of human signal recognition particle by systematic siteâ€directed mutagenesis. Protein Science, 2009, 18, 2183-2195.	7.6	11
51	TβR-II Discriminates the High- and Low-Affinity TGF-β Isoforms via Two Hydrogen-Bonded Ion Pairs. Biochemistry, 2009, 48, 2146-2155.	2.5	53
52	Nuclear Magnetic Resonance Mapping and Functional Confirmation of the Collagen Binding Sites of Matrix Metalloproteinase-2. Biochemistry, 2009, 48, 5822-5831.	2.5	23
53	Kinetic, Dynamic, Ligand Binding Properties, and Structural Models of a Dual-Substrate Specific Nudix Hydrolase from Schizosaccharomyces pombe. Biochemistry, 2009, 48, 6224-6239.	2.5	3
54	A.Âfulgidus SRP54ÂM-domain. Journal of Biomolecular NMR, 2008, 41, 241-8.	2.8	5

ANDREW P HINCK

#	Article	IF	CITATIONS
55	Characterization of Ligand-Binding Properties of the Human BMP Type II Receptor Extracellular Domain. Journal of Molecular Biology, 2008, 378, 191-203.	4.2	23
56	Cooperative Assembly of TGF-Î ² Superfamily Signaling Complexes Is Mediated by Two Disparate Mechanisms and Distinct Modes of Receptor Binding. Molecular Cell, 2008, 29, 157-168.	9.7	247
57	Expression, purification and characterization of BGERII: a novel pan-TGFÂ inhibitor. Protein Engineering, Design and Selection, 2008, 21, 463-473.	2.1	17
58	Structural Transitions of the RING1B C-Terminal Region upon Binding the Polycomb cbox Domain. Biochemistry, 2008, 47, 8007-8015.	2.5	21
59	Structural Basis of J Cochaperone Binding and Regulation of Hsp70. Molecular Cell, 2007, 28, 422-433.	9.7	206
60	Schistosoma mansoni: TGF-β signaling pathways. Experimental Parasitology, 2007, 117, 304-317.	1.2	80
61	Model-free analysis for large proteins at high magnetic field strengths. Journal of Biomolecular NMR, 2007, 38, 315-324.	2.8	4
62	Three Key Residues Underlie the Differential Affinity of the TGFβ Isoforms for the TGFβ Type II Receptor. Journal of Molecular Biology, 2006, 355, 47-62.	4.2	77
63	Sequential Resonance Assignment of the Human BMP Type II Receptor Extracellular Domain. Journal of Biomolecular NMR, 2005, 32, 336-336.	2.8	2
64	Structure and Dynamics of the Homodimeric Dynein Light Chain km23. Journal of Molecular Biology, 2005, 352, 338-354.	4.2	34
65	Assembly of TβRI:TβRII:TGFβ Ternary Complex in vitro with Receptor Extracellular Domains is Cooperative and Isoform-dependent. Journal of Molecular Biology, 2005, 354, 1052-1068.	4.2	71
66	The conserved adenosine in helix 6 ofArchaeoglobus fulgidussignal recognition particle RNA initiates SRP assembly. Archaea, 2004, 1, 269-275.	2.3	10
67	Letter to the Editor: Sequential resonance assignments of the extracellular domain of the human TGFβ typeÂll receptor in complex with monomeric TGFβ3. Journal of Biomolecular NMR, 2004, 29, 103-104.	2.8	7
68	Algorithm-assisted elucidation of disulfide structure: application of the negative signature mass algorithm to mass-mapping the disulfide structure of the 12-cysteine transforming growth factor β type II receptor extracellular domain. Analytical Biochemistry, 2004, 329, 91-103.	2.4	11
69	Solution Structure and Backbone Dynamics of the TGFβ Type II Receptor Extracellular Domainâ€,‡. Biochemistry, 2003, 42, 10126-10139.	2.5	28
70	Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle. Journal of Molecular Biology, 2002, 317, 145-158.	4.2	19
71	Crystal structure of the human TβR2 ectodomain–TGF-β3 complex. Nature Structural Biology, 2002, 9, 203-8.	9.7	130
72	Backbone sequential resonance assignments of yeast iso-2 cytochrome c, reduced and oxidized forms. Journal of Biomolecular NMR, 2002, 22, 93-94.	2.8	2

#	Article	lF	CITATIONS
73	Characterization of Hydride Transfer to Flavin Adenine Dinucleotide in Neuronal Nitric Oxide Synthase Reductase Domain: Geometric Relationship between the Nicotinamide and Isoalloxazine Rings. Archives of Biochemistry and Biophysics, 2001, 395, 129-135.	3.0	7
74	Sequence-specific 1H, 13C and 15N signal assignments and secondary structure of archaeoglobusfulgidus SRP19. Journal of Biomolecular NMR, 2001, 20, 187-188.	2.8	4
75	Complexes with truncated RNAs from the large domain ofArchaeoglobus fulgidussignal recognition particle. FEMS Microbiology Letters, 2001, 198, 105-110.	1.8	6
76	Sequential resonance assignments of the extracellular ligand binding domain of the human TGF-beta type II receptor. Journal of Biomolecular NMR, 2000, 18, 369-370.	2.8	24
77	The RNA binding domain of ribosomal protein L11: three-dimensional structure of the RNA-bound form of the protein and its interaction with 23 S rRNA. Journal of Molecular Biology, 1997, 274, 101-113.	4.2	57
78	High resolution solution structure of ribosomal protein L11-C76, a helical protein with a flexible loop that becomes structured upon binding to RNA. Nature Structural and Molecular Biology, 1997, 4, 70-77.	8.2	97
79	Transforming Growth Factor β1:  Three-Dimensional Structure in Solution and Comparison with the X-ray Structure of Transforming Growth Factor β2,. Biochemistry, 1996, 35, 8517-8534.	2.5	175
80	Engineered Disulfide Bonds in Staphylococcal Nuclease: Effects on the Stability and Conformation of the Folded Proteinâ€. Biochemistry, 1996, 35, 10328-10338.	2.5	44
81	Threeâ€dimensional solution structure of the HIVâ€1 protease complexed with DMP323, a novel cyclic ureaâ€ŧype inhibitor, determined by nuclear magnetic resonance spectroscopy. Protein Science, 1996, 5, 495-506.	7.6	72
82	Binding Affinity of Transforming Growth Factor-β for Its Type II Receptor Is Determined by the C-terminal Region of the Molecule. Journal of Biological Chemistry, 1996, 271, 30656-30662.	3.4	56
83	Multiple-Quantum Line Narrowing for Measurement of H.alphaH.beta. J Couplings in Isotopically Enriched Proteins. Journal of the American Chemical Society, 1995, 117, 5312-5315.	13.7	130
84	Case study of protein structure, stability, and function: NMR investigations of the proline residues in staphylococcal nuclease. Pure and Applied Chemistry, 1994, 66, 65-69.	1.9	4
85	NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: Mutants of staphylococcal nuclease with altered configuration at proline-117. Biochemistry, 1993, 32, 11810-11818.	2.5	40
86	Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Biochemistry, 1993, 32, 5222-5232.	2.5	141
87	Overexpression and purification of avian ovomucoid third domains in Escherichia coli. Protein Engineering, Design and Selection, 1993, 6, 221-227.	2.1	17
88	Solvent effects on the energetics of prolyl peptide bond isomerization. Journal of the American Chemical Society, 1992, 114, 5437-5439.	13.7	109
89	Solution studies of staphylococcal nuclease H124L. 2. Proton, carbon-13, and nitrogen-15 chemical shift assignments for the unligated enzyme and analysis of chemical shift changes that accompany formation of the nuclease-thymidine 3',5'-bisphosphate-calcium ternary complex. Biochemistry, 1992, 31, 921-936.	2.5	51
90	921-936. Two-dimensional NMR studies of staphylococcal nuclease. 2. Sequence-specific assignments of carbon-13 and nitrogen-15 signals from the nuclease H124L-thymidine 3',5'-bisphosphate-calcium ternary complex. Biochemistry, 1990, 29, 102-113.	2.5	55

#	Article	IF	CITATIONS
91	Histidine-121 of staphylococcal nuclease. Correction of the H.delta.2 1H NMR assignment and reinterpretation of the role this residue plays in conformational heterogeneity of the protein. Journal of the American Chemical Society, 1990, 112, 9031-9034.	13.7	8
92	Two-dimensional NMR studies of staphylococcal nuclease: evidence for conformational heterogeneity from hydrogen-1, carbon-13, and nitrogen-15 spin system assignments of the aromatic amino acids in the nuclease H124L-thymidine 3',5'-bisphosphate-calcium(2+) ternary complex. Biochemistry, 1990, 29, 4242-4253.	2.5	24
93	Coupling between local structure and global stability of a protein: mutants of staphylococcal nuclease. Biochemistry, 1990, 29, 4516-4525.	2.5	58