Agustin Aranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Starmerella bacillaris and Zygosaccharomyces bailii on ethanol reduction and Saccharomyces cerevisiae metabolism during mixed wine fermentations. Food Research International, 2022, 159, 111649.	6.2	6
2	Potential application of yeasts from Ecuadorian chichas in controlled beer and chicha production. Food Microbiology, 2021, 98, 103644.	4.2	6
3	Mechanisms of Metabolic Adaptation in Wine Yeasts: Role of Gln3 Transcription Factor. Fermentation, 2021, 7, 181.	3.0	0
4	Evaluation of yeasts from Ecuadorian chicha by their performance as starters for alcoholic fermentations in the food industry. International Journal of Food Microbiology, 2020, 317, 108462.	4.7	21
5	Wine Yeast Peroxiredoxin TSA1 Plays a Role in Growth, Stress Response and Trehalose Metabolism in Biomass Propagation. Microorganisms, 2020, 8, 1537.	3.6	7
6	Role of Saccharomyces cerevisiae Nutrient Signaling Pathways During Winemaking: A Phenomics Approach. Frontiers in Bioengineering and Biotechnology, 2020, 8, 853.	4.1	8
7	Saccharomyces cerevisiae nutrient signaling pathways show an unexpected early activation pattern during winemaking. Microbial Cell Factories, 2020, 19, 124.	4.0	10
8	Basal catalase activity and high glutathione levels influence the performance of non-Saccharomyces active dry wine yeasts. Food Microbiology, 2020, 92, 103589.	4.2	14
9	Validation and biochemical characterisation of beneficial argan oil treatment in biomass propagation for industrial active dry yeast production. Innovative Food Science and Emerging Technologies, 2019, 51, 156-166.	5.6	3
10	Enological Repercussions of Non-Saccharomyces Species. Fermentation, 2019, 5, 68.	3.0	5
11	Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions. Applied and Environmental Microbiology, 2019, 85, .	3.1	9
12	Yeast Life Span and its Impact on Food Fermentations. Fermentation, 2019, 5, 37.	3.0	14
13	Stress Response in Yeasts Used for Food Production. , 2019, , 183-206.		1
14	Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes. Scientific Reports, 2018, 8, 16500.	3.3	14
15	Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production. Microbial Cell, 2018, 5, 184-197.	3.2	16
16	Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation. Scientific Reports, 2017, 7, 12414.	3.3	10
17	Biotechnological impact of stress response on wine yeast. Letters in Applied Microbiology, 2017, 64, 103-110.	2.2	56
18	Sch 9p kinase and the Gcn4p transcription factor regulate glycerol production during winemaking. FEMS Yeast Research, 2016, 17, fow106.	2.3	14

Agustin Aranda

#	Article	IF	CITATIONS
19	RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking. Applied Microbiology and Biotechnology, 2016, 100, 5017-5027.	3.6	8
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
21	Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast. AMB Express, 2015, 5, 75.	3.0	8
22	Interplay among Gcn5, Sch9 and Mitochondria during Chronological Aging of Wine Yeast Is Dependent on Growth Conditions. PLoS ONE, 2015, 10, e0117267.	2.5	45
23	Yeast biomass, an optimised product with myriad applications in the food industry. Trends in Food Science and Technology, 2015, 46, 167-175.	15.1	48
24	Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production. Letters in Applied Microbiology, 2015, 60, 217-222.	2.2	19
25	AcetyltransferaseSAS2and sirtuinSIR2,respectively, control flocculation and biofilm formation in wine yeast. FEMS Yeast Research, 2014, 14, 845-857.	2.3	26
26	Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking. Microbial Cell Factories, 2013, 12, 1.	4.0	135
27	Oxidative Stress Tolerance, Adenylate Cyclase, and Autophagy Are Key Players in the Chronological Life Span of Saccharomyces cerevisiae during Winemaking. Applied and Environmental Microbiology, 2012, 78, 2748-2757.	3.1	43
28	Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions. Microbial Cell Factories, 2012, 11, 104.	4.0	26
29	Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium. Mechanisms of Ageing and Development, 2012, 133, 348-358.	4.6	34
30	Phylogenetic origin and transcriptional regulation at the post-diauxic phase of SPI1, in Saccharomyces cerevisiae. Cellular and Molecular Biology Letters, 2012, 17, 393-407.	7.0	6
31	Saccharomyces Yeasts I. , 2011, , 1-31.		7
32	The Saccharomyces cerevisiae flavodoxin-like proteins Ycp4 and Rfs1 play a role in stress response and in the regulation of genes related to metabolism. Archives of Microbiology, 2011, 193, 515-525.	2.2	15
33	Ubiquitin ligase Rsp5p is involved in the gene expression changes during nutrient limitation in <i>Saccharomyces cerevisiae</i> . Yeast, 2009, 26, 1-15.	1.7	12
34	Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. FEMS Yeast Research, 2008, 8, 1127-1136.	2.3	33
35	Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Research, 2007, 35, 2191-2198.	14.5	128
36	A novel approach for the improvement of stress resistance in wine yeasts. International Journal of Food Microbiology, 2007, 114, 83-91.	4.7	73

Agustin Aranda

#	Article	IF	CITATIONS
37	The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds. Antonie Van Leeuwenhoek, 2007, 92, 61-75.	1.7	58
38	Sulfur and Adenine Metabolisms Are Linked, and Both Modulate Sulfite Resistance in Wine Yeast. Journal of Agricultural and Food Chemistry, 2006, 54, 5839-5846.	5.2	28
39	Exposure of Saccharomyces cerevisiae to Acetaldehyde Induces Sulfur Amino Acid Metabolism and Polyamine Transporter Genes, Which Depend on Met4p and Haa1p Transcription Factors, Respectively. Applied and Environmental Microbiology, 2004, 70, 1913-1922.	3.1	71
40	Genomic Run-On Evaluates Transcription Rates for All Yeast Genes and Identifies Gene Regulatory Mechanisms. Molecular Cell, 2004, 15, 303-313.	9.7	233
41	Response to acetaldehyde stress in the yeastSaccharomyces cerevisiae involves a strain-dependent regulation of severalALD genes and is mediatedby the general stress response pathway. Yeast, 2003, 20, 747-759.	1.7	94
42	A Role for Chromatin Remodeling in Transcriptional Termination by RNA Polymerase II. Molecular Cell, 2002, 10, 1441-1452.	9.7	137
43	Study of the First Hours of Microvinification by the Use of Osmotic Stress-response Genes as Probes. Systematic and Applied Microbiology, 2002, 25, 153-161.	2.8	39
44	Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines. Archives of Microbiology, 2002, 177, 304-312.	2.2	71
45	Transcriptional Termination Factors for RNA Polymerase II in Yeast. Molecular Cell, 2001, 7, 1003-1011.	9.7	56
46	Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomycescerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8415-8420.	7.1	72
47	Definition of Transcriptional Pause Elements in Fission Yeast. Molecular and Cellular Biology, 1999, 19, 1251-1261.	2.3	31
48	Detection of Non-B-DNA Secondary Structures by S1 Nuclease Digestion. Journal of Chemical Education, 1998, 75, 762.	2.3	2
49	The yeast FBP1 poly(A) signal functions in both orientations and overlaps with a gene promoter. Nucleic Acids Research, 1998, 26, 4588-4596.	14.5	9
50	Analysis of the Structure of a Natural Alternating d(TA)n Sequence in Yeast Chromatin. , 1997, 13, 313-326.		23
51	Genetically Modified Yeasts in Wine Biotechnology. , 0, , .		0