

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8770223/publications.pdf Version: 2024-02-01

Х-У 7ноц

#	Article	IF	CITATIONS
1	High-Resolution Analyses of Human Leukocyte Antigens Allele and Haplotype Frequencies Based on 169,995 Volunteers from the China Bone Marrow Donor Registry Program. PLoS ONE, 2015, 10, e0139485.	2.5	70
2	Transcriptional mutagenesis mediated by 8-oxoC induces translational errors in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4218-4222.	7.1	56
3	Systematic screening for <i>CYP3A4</i> genetic polymorphisms in a Han Chinese population. Pharmacogenomics, 2017, 18, 369-379.	1.3	51
4	Oxidative damage of DNA, RNA and their metabolites in leukocytes, plasma and urine of <i>Macaca mulatta</i> : 8-oxoguanosine in urine is a useful marker for aging. Free Radical Research, 2012, 46, 1093-1098.	3.3	37
5	mTOR promotes pituitary tumor development through activation of PTTG1. Oncogene, 2017, 36, 979-988.	5.9	36
6	Effects of lipoxin A4 on lipopolysaccharide induced proliferation and reactive oxygen species production in RAW264.7 macrophages through modulation of G-CSF secretion. Inflammation Research, 2007, 56, 324-333.	4.0	31
7	Enzymatic Activities of CYP3A4 Allelic Variants on Quinine 3-Hydroxylation In Vitro. Frontiers in Pharmacology, 2019, 10, 591.	3.5	31
8	Autophagy-dependent generation of Axin2+ cancer stem-like cells promotes hepatocarcinogenesis in liver cirrhosis. Oncogene, 2017, 36, 6725-6737.	5.9	26
9	Analysis of highâ€resolution HLAâ€A, â€B, w, â€DRB1, and â€DQB1 alleles and haplotypes in 718 Chinese m donors based on donor–recipient confirmatory typings. International Journal of Immunogenetics, 2009, 36, 275-282.	narrow 1.8	24
10	Nontraditional risk factors for cardiovascular disease and visceral adiposity index among different body size phenotypes. Nutrition, Metabolism and Cardiovascular Diseases, 2015, 25, 100-107.	2.6	24
11	Ceftriaxone and Acute Renal Failure in Children. Pediatrics, 2014, 133, e917-e922.	2.1	23
12	Room-temperature, atmospheric plasma needle reduces adenovirus gene expression in HEK 293A host cells. Applied Physics Letters, 2011, 99, .	3.3	19
13	Structural changes in exon 11 of <i>MEF2A</i> are not related to sporadic coronary artery disease in Han Chinese population. European Journal of Clinical Investigation, 2010, 40, 669-677.	3.4	13
14	Sex differences in the impact of nonalcoholic fatty liver disease on cardiovascular risk factors. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 63-69.	2.6	12
15	PM _{2.5} stimulated the release of cytokines from BEAS-2B cells through activation of IKK/NF- <i>îº</i> B pathway. Human and Experimental Toxicology, 2019, 38, 311-320.	2.2	12
16	Analysis of the oxidative damage of DNA, RNA, and their metabolites induced by hyperglycemia and related nephropathy in Sprague Dawley rats. Free Radical Research, 2015, 49, 1199-1209.	3.3	11
17	Increased oxidative damage of RNA in liver injury caused by hepatitis B virus (HBV) infection. Free Radical Research, 2018, 52, 426-433.	3.3	11
18	A higher level of total bile acid in early mid-pregnancy is associated with an increased risk of gestational diabetes mellitus: a prospective cohort study in Wuhan, China. Journal of Endocrinological Investigation, 2020, 43, 1097-1103.	3.3	10

Х-Ү Zнои

#	Article	IF	CITATIONS
19	Determination of lesinurad in rat plasma by a UHPLC–MS/MS assay. Chemistry Central Journal, 2017, 11, 121.	2.6	9
20	Mutation update and long-term outcome after treatment with active vitamin D3 in Chinese patients with pseudovitamin D-deficiency rickets (PDDR). Osteoporosis International, 2019, 30, 481-489.	3.1	8
21	Functional characterization of CYP2C19 variants in nebivolol 4â€hydroxlation in vitro. Drug Testing and Analysis, 2018, 10, 807-813.	2.6	7
22	Identification of a novel allele HLAâ€A*2489 by sequenceâ€based typing in a Chinese individual. Tissue Antigens, 2009, 74, 249-250.	1.0	5
23	Lowered Nudix type 5 expression leads to cellular senescence in IMR-90 fibroblast cells. Free Radical Research, 2013, 47, 511-516.	3.3	5
24	Experimental study on the effect of ligustrazine in the prevention of intimal proliferation of deendothelial artery. Journal of Tongji Medical University, 2000, 20, 205-207.	0.1	4
25	Characterization of the novel <i>HLAâ€ĐQB1*05:155</i> allele by sequencingâ€based typing. Hla, 2017, 90, 377-378.	0.6	4
26	Characterization of the novel <i>HLA *03:02:17</i> allele by sequencingâ€based typing. Hla, 2018, 92, 54-55.	0.6	4
27	Characterization of the novel <i>HLAâ€ÐQB1*06:02:29</i> allele by sequencingâ€based typing. Hla, 2018, 92, 184-185.	0.6	4
28	Identification of the novel <i>HLA *07:02:107</i> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2019, 94, 388-389.	0.6	4
29	Characterization of Alpelisib in Rat Plasma by a Newly Developed UPLC-MS/MS Method: Application to a Drug-Drug Interaction Study. Frontiers in Pharmacology, 2021, 12, 743411.	3.5	4
30	Identification of a new <i><scp>HLA</scp>â€B*46</i> allele, <i>B*46:37</i> , in a Chinese individual. Tissue Antigens, 2013, 81, 465-466.	1.0	3
31	A new <i><scp>HLA</scp>â€A*24</i> allele, <i><scp>HLA</scp>â€A*24:02:87</i> , identified by sequencingâ€based typing in a Chinese volunteer bone marrow donor. Tissue Antigens, 2014, 84, 413-414.	1.0	3
32	A new <i><scp>HLA </scp>*07</i> allele, <i><scp>C</scp>*07:02:70</i> , identified in a Chinese individual. Hla, 2016, 88, 54-55.	0.6	3
33	A new <i>HLAâ€B*55</i> allele, <i>B*55:83N</i> with a stop codon in exon 4 generated by a point mutation <i>,</i> identified in a Chinese individual. Hla, 2017, 89, 119-120.	0.6	3
34	Identification of the novel <i><scp>HLAâ€DRB1</scp>*14:54:06</i> allele by sequencingâ€based typing in a Chinese bone marrow donor. Hla, 2017, 89, 172-173.	0.6	3
35	Characterization of the novel <i>HLAâ€A*02:07:10</i> allele by sequencingâ€based typing. Hla, 2017, 90, 361-362.	0.6	3
36	Characterization of the novel <i>HLAâ€DRB1*13:241</i> allele by sequencingâ€based typing. Hla, 2017, 90, 380-381.	0.6	3

Х-Ү Zнои

#	Article	IF	CITATIONS
37	A novel <i>HLAâ€DRB1*07</i> allele, <i>HLAâ€DRB1*07:01:22</i> , identified in a Chinese individual. Hla, 2018, 91, 143-144.	0.6	3
38	Characterization of the novel <i>HLAâ€ÐQB1*03:279</i> allele by sequencingâ€based typing. Hla, 2018, 92, 63-64.	0.6	3
39	Characterization of the novel <i>HLA *07:613</i> allele by sequencingâ€based typing. Hla, 2018, 92, 106-107.	0.6	3
40	Characterization of the novel <i>HLAâ€B*40:366</i> allele by sequencingâ€based typing. Hla, 2018, 92, 102-103.	0.6	3
41	Characterization of the novel <i>HLAâ€B*40:01:51</i> allele by sequencingâ€based typing. Hla, 2018, 92, 177-178.	0.6	3
42	Identification of the novel <scp><i>HLA *15:219</i></scp> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2020, 96, 741-742.	0.6	3
43	Identification of the novel <scp><i>HLAâ€A*30:171</i></scp> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2020, 96, 721-722.	0.6	3
44	The novel <scp><i>HLA *03</i></scp> allele, <scp><i>HLA *03:597</i></scp> , identified in a Chinese patient. Hla, 2022, 100, 534-536.	0.6	3
45	Characterization of a novel <i><scp>HLA</scp> *04</i> allele, <i><scp>HLA</scp> *04:277</i> . Hla, 2017, 90, 315-316.	0.6	2
46	Characterization of the novel <i>HLAâ€B*48:43</i> allele by sequencingâ€based typing. Hla, 2018, 91, 139-140.	0.6	2
47	Genetic polymorphism of human leucocyte antigen and susceptibility to multidrugâ€resistant and rifampicinâ€resistant tuberculosis in Han Chinese from Hubei Province. International Journal of Immunogenetics, 2018, 45, 8-21.	1.8	2
48	Characterization of the novel HLAâ€DQB1*03:01:45 allele by sequencingâ€based typing. Hla, 2019, 93, 136-137.	0.6	2
49	Identification of the novel <i>HLAâ€A*30:01:13</i> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2019, 94, 370-371.	0.6	2
50	Identification of the novel <i>HLAâ€B*51:285</i> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2019, 94, 382-383.	0.6	2
51	Characterization of the novel HLAâ€DRB1*11:245 allele by sequencingâ€based typing. Hla, 2019, 93, 133-134.	0.6	2
52	Rachitic rosary sign and tie sign in tumour-induced osteomalacia. QJM - Monthly Journal of the Association of Physicians, 2020, 113, 284-285.	0.5	2
53	Identification and Enzymatic Activity Evaluation of a Novel CYP2C9 Allelic Variant Discovered in a Patient. Frontiers in Pharmacology, 2021, 12, 619339.	3.5	1
54	ldentification of a new nonâ€synonymous mutation in <scp>HLA</scp> â€B gene, <i><scp>HLA</scp>â€B*15:320</i> , in a Chinese individual by sequenceâ€based typing. Tissue Antigens, 2015, 85, 139-140.	1.0	0