
Barbara Rehermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/877010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunology of hepatitis B virus and hepatitis C virus infection. Nature Reviews Immunology, 2005, 5, 215-229.	22.7	1,447
2	The Liver as an Immunological Organ. Hepatology, 2006, 43, S54-S62.	7.3	1,076
3	A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nature Genetics, 2013, 45, 164-171.	21.4	843
4	The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T–lymphocyte response. Nature Medicine, 1996, 2, 1104-1108.	30.7	804
5	Pathogenesis, Natural History, Treatment, and Prevention of Hepatitis C. Annals of Internal Medicine, 2000, 132, 296.	3.9	764
6	Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nature Medicine, 2000, 6, 578-582.	30.7	697
7	Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell, 2017, 171, 1015-1028.e13.	28.9	603
8	Impaired Effector Function of Hepatitis C Virus-Specific CD8+ T Cells in Chronic Hepatitis C Virus Infection. Journal of Immunology, 2002, 169, 3447-3458.	0.8	596
9	The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis Journal of Experimental Medicine, 1995, 181, 1047-1058.	8.5	479
10	Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. Journal of Clinical Investigation, 2009, 119, 1745-1754.	8.2	454
11	Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nature Medicine, 2013, 19, 859-868.	30.7	409
12	Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide-MHC tetramers. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5692-5697.	7.1	401
13	Hepatitis C Virus Continuously Escapes From Neutralizing Antibody and T-Cell Responses During Chronic Infection In Vivo. Gastroenterology, 2007, 132, 667-678.	1.3	372
14	Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science, 2019, 365, .	12.6	360
15	A global scientific strategy to cure hepatitis B. The Lancet Gastroenterology and Hepatology, 2019, 4, 545-558.	8.1	342
16	Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell, 2018, 172, 784-796.e18.	28.9	323
17	Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus Journal of Clinical Investigation, 1997, 100, 2376-2385.	8.2	305
18	Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection Journal of Clinical Investigation, 1996, 97, 1655-1665.	8.2	287

#	Article	IF	CITATIONS
19	Quantitative analysis of the peripheral blood cytotoxic T lymphocyte response in patients with chronic hepatitis C virus infection Journal of Clinical Investigation, 1996, 98, 1432-1440.	8.2	285
20	Long-lasting memory T cell responses following self-limited acute hepatitis B Journal of Clinical Investigation, 1996, 98, 1185-1194.	8.2	269
21	Natural Killer Cells Are Polarized Toward Cytotoxicity in Chronic Hepatitis C in an Interferon-Alfa–Dependent Manner. Gastroenterology, 2010, 138, 325-335.e2.	1.3	243
22	Immune Responses to HCV and Other Hepatitis Viruses. Immunity, 2014, 40, 13-24.	14.3	236
23	Successful Interferon-Free Therapy of Chronic Hepatitis C Virus Infection Normalizes Natural Killer Cell Function. Gastroenterology, 2015, 149, 190-200.e2.	1.3	222
24	Peripheral CD4+CD8+ T cells are differentiated effector memory cells with antiviral functions. Blood, 2004, 104, 478-486.	1.4	218
25	Cross-Reactivity between Hepatitis C Virus and Influenza A Virus Determinant-Specific Cytotoxic T Cells. Journal of Virology, 2001, 75, 11392-11400.	3.4	215
26	Kinetics of CD4 + and CD8 + Memory T-Cell Responses during Hepatitis C Virus Rechallenge of Previously Recovered Chimpanzees. Journal of Virology, 2003, 77, 4781-4793.	3.4	184
27	Previously Infected and Recovered Chimpanzees Exhibit Rapid Responses That Control Hepatitis C Virus Replication upon Rechallenge. Journal of Virology, 2002, 76, 6586-6595.	3.4	177
28	Infection trains the host for microbiota-enhanced resistance to pathogens. Cell, 2021, 184, 615-627.e17.	28.9	148
29	Immunological aspects of antiviral therapy of chronic hepatitis B virus and hepatitis C virus infections. Hepatology, 2015, 61, 712-721.	7.3	146
30	Spontaneous Clearance of Chronic Hepatitis C Virus Infection Is Associated With Appearance of Neutralizing Antibodies and Reversal of T-Cell Exhaustion. Journal of Infectious Diseases, 2012, 205, 763-771.	4.0	142
31	Virus-induced type I IFN stimulates generation of immunoproteasomes at the site of infection. Journal of Clinical Investigation, 2006, 116, 3006-3014.	8.2	142
32	Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. Journal of Clinical Investigation, 2008, 118, 1017-26.	8.2	141
33	Efficient Generation of a Hepatitis B Virus Cytotoxic T Lymphocyte Epitope Requires the Structural Features of Immunoproteasomes. Journal of Experimental Medicine, 2000, 191, 503-514.	8.5	140
34	Early Changes in Natural Killer Cell Function Indicate Virologic Response to Interferon Therapy for Hepatitis C. Gastroenterology, 2011, 141, 1231-1239.e2.	1.3	139
35	Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, .	6.0	131
36	Effects of antiviral therapy on the cellular immune response in acute hepatitis C. Hepatology, 2004, 40, 87-97.	7.3	130

#	Article	IF	CITATIONS
37	Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology, 2017, 66, 1779-1793.	7.3	128
38	Interaction between the Hepatitis C Virus and the Immune System. Seminars in Liver Disease, 2000, 20, 127-142.	3.6	122
39	Hepatitis C virus mutation affects proteasomal epitope processing. Journal of Clinical Investigation, 2004, 114, 250-259.	8.2	119
40	IL-29 is the dominant type III interferon produced by hepatocytes during acute hepatitis C virus infection. Hepatology, 2012, 56, 2060-2070.	7.3	118
41	Foxp3+CD4+CD25+ T cells control virus-specific memory T cells in chimpanzees that recovered from hepatitis C. Blood, 2006, 107, 4424-4432.	1.4	117
42	Chronic Infections with Hepatotropic Viruses: Mechanisms of Impairment of Cellular Immune Responses. Seminars in Liver Disease, 2007, 27, 152-160.	3.6	114
43	Immunization with Hepatitis C Virus-Like Particles Induces Humoral and Cellular Immune Responses in Nonhuman Primates. Journal of Virology, 2004, 78, 6995-7003.	3.4	106
44	Early changes in interferon signaling define natural killer cell response and refractoriness to interferon-based therapy of hepatitis C patients. Hepatology, 2012, 55, 39-48.	7.3	103
45	Intrahepatic T Cells in Hepatitis B. Journal of Experimental Medicine, 2000, 191, 1263-1268.	8.5	101
46	Immune Responses in Hepatitis B Virus Infection. Seminars in Liver Disease, 2003, 23, 021-038.	3.6	98
47	Hepatitis C virus infection: when silence is deception. Trends in Immunology, 2003, 24, 456-464.	6.8	95
48	Insights From Antiviral Therapy Into Immune Responses to Hepatitis B and C Virus Infection. Gastroenterology, 2019, 156, 369-383.	1.3	94
49	Cell culture-produced hepatitis C virus impairs plasmacytoid dendritic cell function. Hepatology, 2008, 47, 385-395.	7.3	93
50	Natural killer cell function is intact after direct exposure to infectious hepatitis C virions. Hepatology, 2009, 49, 12-21.	7.3	90
51	Intra-Hepatic Depletion of Mucosal-Associated Invariant T Cells in Hepatitis C Virus-Induced Liver Inflammation. Gastroenterology, 2017, 153, 1392-1403.e2.	1.3	87
52	Hepatitis C virus mutation affects proteasomal epitope processing. Journal of Clinical Investigation, 2004, 114, 250-259.	8.2	87
53	Cellular Immune Responses to the Hepatitis B Virus Polymerase. Journal of Immunology, 2004, 173, 5863-5871.	0.8	86
54	The Clearance of Hepatitis C Virus Infection in Chimpanzees May Not Necessarily Correlate with the Appearance of Acquired Immunity. Journal of Virology, 2003, 77, 862-870.	3.4	84

#	Article	IF	CITATIONS
55	Monocytes Activate Natural Killer Cells via Inflammasome-Induced Interleukin 18 in Response to Hepatitis C Virus Replication. Gastroenterology, 2014, 147, 209-220.e3.	1.3	81
56	Immunopathology of hepatitis C. Seminars in Immunopathology, 1997, 19, 57-68.	4.0	70
57	Natural Killer Cells in Viral Hepatitis. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 578-588.	4.5	69
58	Innate immune responses in hepatitis C virus-exposed healthcare workers who do not develop acute infection. Hepatology, 2013, 58, 1621-1631.	7.3	65
59	Successful Vaccination Induces Multifunctional Memory T-Cell Precursors Associated With Early Control of Hepatitis C Virus. Gastroenterology, 2012, 143, 1048-1060.e4.	1.3	64
60	Hepatitis C Virus (HCV)–Specific Immune Responses of Longâ€Term Injection Drug Users Frequently Exposed to HCV. Journal of Infectious Diseases, 2008, 198, 203-212.	4.0	62
61	Acute Hepatitis C: A Multifaceted Disease. Seminars in Liver Disease, 2005, 25, 7-17.	3.6	60
62	Oral immunization with HCV-NS3—transformed Salmonella: Induction of HCV-specific CTL in a transgenic mouse model. Gastroenterology, 2001, 121, 1158-1166.	1.3	59
63	Delayed Induction, Not Impaired Recruitment, of Specific CD8+ T Cells Causes the Late Onset of Acute Hepatitis C. Gastroenterology, 2011, 141, 686-695.e1.	1.3	56
64	Durability of Antibody Response Against Hepatitis B Virus in Healthcare Workers Vaccinated as Adults. Clinical Infectious Diseases, 2015, 60, 505-513.	5.8	55
65	<i>R2d2</i> Drives Selfish Sweeps in the House Mouse. Molecular Biology and Evolution, 2016, 33, 1381-1395.	8.9	55
66	Rapid decrease in hepatitis C viremia by direct acting antivirals improves the natural killer cell response to IFNα. Gut, 2017, 66, 724-735.	12.1	55
67	Emergence of a distinct pattern of viral mutations in chimpanzees infected with a homogeneous inoculum of hepatitis C virus. Gastroenterology, 2001, 121, 1226-1233.	1.3	53
68	Direct Functional Analysis of Epitope-Specific CD8+T Cells in Peripheral Blood. Viral Immunology, 2001, 14, 59-69.	1.3	52
69	Sporadic Reappearance of Minute Amounts of Hepatitis C Virus RNA After Successful Therapy Stimulates Cellular Immune Responses. Gastroenterology, 2011, 140, 676-685.e1.	1.3	52
70	T cell responses in hepatitis C virus infection: Historical overview and goals for future research. Antiviral Research, 2015, 114, 96-105.	4.1	52
71	Effect of ribavirin on viral kinetics and liver gene expression in chronic hepatitis C. Gut, 2014, 63, 161-169.	12.1	51
72	The Frequency of CD127 ⁺ Hepatitis C Virus (HCV)-Specific T Cells but Not the Expression of Exhaustion Markers Predicts the Outcome of Acute HCV Infection. Journal of Virology, 2013, 87, 4772-4777.	3.4	50

#	Article	IF	CITATIONS
73	Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Annals of the Rheumatic Diseases, 2018, 77, 612-619.	0.9	49
74	Dendritic Cells Transfected with Cytopathic Self-Replicating RNA Induce Crosspriming of CD8+ T Cells and Antiviral Immunity. Immunity, 2004, 20, 47-58.	14.3	48
75	The Hepatitis B Vaccine Protects Re-Exposed Health Care Workers, But Does Not Provide Sterilizing Immunity. Gastroenterology, 2013, 145, 1026-1034.	1.3	47
76	Keratinocyte-intrinsic MHCII expression controls microbiota-induced Th1 cell responses. Proceedings of the United States of America, 2019, 116, 23643-23652.	7.1	47
77	Improving natural product research translation: From source to clinical trial. FASEB Journal, 2020, 34, 41-65.	0.5	45
78	Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nature Medicine, 2013, 19, 1638-1642.	30.7	43
79	Hepatitis D Virus-Specific CD8+ T Cells Have a Memory-Like Phenotype Associated With Viral Immune Escape in Patients With Chronic Hepatitis D Virus Infection. Gastroenterology, 2019, 156, 1805-1819.e9.	1.3	43
80	Potent enhancement of cellular and humoral immune responses against recombinant hepatitis B antigens using AS02A adjuvant in healthy adults. Vaccine, 2005, 23, 2591-2601.	3.8	42
81	Identification of CD4 T-Cell Epitopes in Soluble Liver Antigen/Liver Pancreas Autoantigen in Autoimmune Hepatitis. Gastroenterology, 2008, 135, 2107-2118.	1.3	42
82	Private aspects of heterologous immunity. Journal of Experimental Medicine, 2005, 201, 667-670.	8.5	38
83	Baseline Intrahepatic and Peripheral Innate Immunity are Associated with Hepatitis C Virus Clearance During Directâ€Acting Antiviral Therapy. Hepatology, 2018, 68, 2078-2088.	7.3	38
84	Induction of CXCR3- and CCR5-associated chemokines during acute hepatitis C virus infection. Journal of Hepatology, 2011, 55, 545-553.	3.7	34
85	Occupational Exposure to Hepatitis C Virus: Early T-Cell Responses in the Absence of Seroconversion in a Longitudinal Cohort Study. Journal of Infectious Diseases, 2013, 208, 1020-1025.	4.0	34
86	Molecular and Immunological Significance of Chimpanzee Major Histocompatibility Complex Haplotypes for Hepatitis C Virus Immune Response and Vaccination Studies. Journal of Virology, 2002, 76, 6093-6103.	3.4	32
87	Hepatitis C Virus Attenuates Interferon-Induced Major Histocompatibility Complex Class I Expression and Decreases CD8+ TÂCell Effector Functions. Gastroenterology, 2014, 146, 1351-1360.e4.	1.3	31
88	Liver-Resident Bystander CD8+ TÂCells Contribute to Liver Disease Pathogenesis in Chronic Hepatitis D Virus Infection. Gastroenterology, 2021, 161, 1567-1583.e9.	1.3	31
89	Genetic Immunization of Wild-Type and Hepatitis C Virus Transgenic Mice Reveals a Hierarchy of Cellular Immune Response and Tolerance Induction against Hepatitis C Virus Structural Proteins. Journal of Virology, 2001, 75, 12121-12127.	3.4	30
90	Sequence Analysis of Hepatitis C Virus From Patients With Relapse After a Sustained Virological Response: Relapse or Reinfection?. Journal of Infectious Diseases, 2014, 209, 38-45.	4.0	30

#	Article	IF	CITATIONS
91	Advances in hepatitis C research and treatment. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 70-72.	17.8	29
92	High levels of subgenomic HCV plasma RNA in immunosilent infections. Virology, 2007, 365, 446-456.	2.4	27
93	B cell homeostasis in chronic hepatitis C virus-related mixed cryoglobulinemia is maintained through naÃ⁻ve B cell apoptosis. Hepatology, 2012, 56, 1602-1610.	7.3	27
94	Liver-Directed Gamma Interferon Gene Delivery in Chronic Hepatitis C. Journal of Virology, 2005, 79, 13412-13420.	3.4	26
95	Ribavirin improves the IFN- \hat{I}^3 response of natural killer cells to IFN-based therapy of hepatitis C virus infection. Hepatology, 2014, 60, 1160-1169.	7.3	26
96	Mucosal-Associated Invariant T Cells in Chronic Inflammatory Liver Disease. Seminars in Liver Disease, 2018, 38, 060-065.	3.6	26
97	The clinical relevance of persistent recombinant immunoblot assay–indeterminate reactions: insights into the natural history of hepatitis C virus infection and implications for donor counseling. Transfusion, 2012, 52, 1940-1948.	1.6	23
98	Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nature Metabolism, 2021, 3, 1042-1057.	11.9	23
99	Trace amounts of sporadically reappearing HCV RNA can cause infection. Journal of Clinical Investigation, 2014, 124, 3469-3478.	8.2	23
100	Hepatitis C vaccines: Inducing and challenging memory T cells. Hepatology, 2006, 43, 1395-1398.	7.3	20
101	The Kinetics of Hepatitis C Virus-Specific CD8 T-Cell Responses in the Blood Mirror Those in the Liver in Acute Hepatitis C Virus Infection. Journal of Virology, 2008, 82, 9782-9788.	3.4	20
102	Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. Journal of Experimental Medicine, 2016, 213, 3041-3056.	8.5	20
103	Infectivity in chimpanzees (Pan troglodytes) of plasma collected before HCV RNA detectability by FDA-licensed assays: implications for transfusion safety and HCV infection outcomes. Blood, 2012, 119, 6326-6334.	1.4	19
104	Use of Current and New Endpoints in the Evaluation of Experimental Hepatitis B Therapeutics. Clinical Infectious Diseases, 2017, 64, 1283-1288.	5.8	19
105	Immune responses and immunity in hepatitis C virus infection. Journal of Gastroenterology, 2001, 36, 799-808.	5.1	18
106	Clearance of pegylated interferon by Kupffer cells limits NK cell activation and therapy response of patients with HBV infection. Science Translational Medicine, 2021, 13, .	12.4	18
107	More Rare Birds, and the Occasional Swan. Gastroenterology, 2009, 136, 2412-2414.	1.3	15
108	Mature peritoneal macrophages take an avascular route into the injured liver and promote tissue repair. Hepatology, 2017, 65, 376-379.	7.3	15

#	Article	IF	CITATIONS
109	6 Immunopathogenesis of viral hepatitis. Bailliere's Clinical Gastroenterology, 1996, 10, 483-500.	0.9	13
110	The liver as an immunological organ. Journal of Gastroenterology and Hepatology (Australia), 2004, 19, S279-S283.	2.8	13
111	Taking the brake off T cells in chronic viral infection. Nature Medicine, 2006, 12, 276-277.	30.7	13
112	Serological pattern of hepatitis C virus recurrence after liver transplantation. Journal of Hepatology, 1996, 24, 15-20.	3.7	11
113	Chronic hepatitis B and hepatocarcinogenesis: Does prevention of "collateral damage―bring the cure?. Hepatology, 2003, 37, 707-710.	7.3	11
114	The Accelerating Pace of HCV Research: A Summary of the 15th International Symposium on Hepatitis C Virus and Related Viruses. Gastroenterology, 2009, 136, 9-16.	1.3	11
115	Identification of Novel Chimpanzee MHC Class I and II Alleles Using an Improved Sequence-Based Typing Strategy. Human Immunology, 2006, 67, 63-72.	2.4	9
116	Tissue-resident T cells in hepatitis B: A new target for cure?. Journal of Experimental Medicine, 2017, 214, 1564-1566.	8.5	9
117	Virus-Induced Interferon Regulates the Urea Cycle. Immunity, 2019, 51, 975-977.	14.3	8
118	Interleukin-6 in liver diseases. Journal of Hepatology, 1992, 15, 277-280.	3.7	7
119	The role of genetics in hepatic fibrosis among hepatitis C virus patients. Hepatology, 2018, 67, 2043-2045.	7.3	6
120	Inflammation drives an altered phenotype of mucosal-associated invariant T cells in chronic hepatitis D virus infection. Journal of Hepatology, 2019, 71, 237-239.	3.7	6
121	Immunologic aspects of acute and chronic hepatitis B and C. Current Opinion in Gastroenterology, 1996, 12, 554-559.	2.3	5
122	Ethnicity and hepatitis C virus infection. Clinical Gastroenterology and Hepatology, 2004, 2, 456-458.	4.4	5
123	Hepatitis C virus and the threshold of natural killer cell inhibition. Hepatology, 2005, 41, 675-677.	7.3	5
124	Dendritic cells transfected with Her2 antigen-encoding RNA replicons cross-prime CD8 T cells and protect mice against tumor challenge. Vaccine, 2010, 28, 7764-7773.	3.8	5
125	Natural versus Laboratory World: Incorporating Wild-Derived Microbiota into Preclinical Rodent Models. Journal of Immunology, 2021, 207, 1703-1709.	0.8	4
126	Chronic HCV infection and the clonality of intrahepatic T cells. Journal of Hepatology, 2003, 38, 677-680.	3.7	3

#	Article	IF	CITATIONS
127	Peptide-dependent HLA-KIR-mediated regulation of NK cell function. Journal of Hepatology, 2016, 65, 237-239.	3.7	3
128	Determination of Hepatitis B Virus-Specific CD8 ⁺ T-Cell Activity in the Liver. , 2004, 96, 65-84.		2
129	Acute Hepatitis C. Gastroenterology, 2009, 136, 2411.	1.3	2
130	Determination of HCV-Specific T-Cell Activity. Methods in Molecular Biology, 2009, 510, 403-413.	0.9	2
131	Hepatic NK, NKT, and T Cells. , 2007, , 71-82.		2
132	8 Immunopathogenesis of hepatitis C. Biomedical Research Reports, 2000, 2, 147-168.	0.3	1
133	Analysis of HCV-Specific T Cells by Flow Cytometry. Methods in Molecular Biology, 2009, 510, 415-426.	0.9	1
134	Spontaneous Clearance of Drugâ€Resistant Chronic Hepatitis C Virus Infection. Hepatology, 2021, 74, 3552-3553.	7.3	1
135	Reply: B-cell frequency in HCV-related mixed cryoglobulinemia. Hepatology, 2013, 58, 448-449.	7.3	0