
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8769659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persulfate-Induced Three Coordinate Nitrogen (N3C) Vacancies in Defective Carbon Nitride for Enhanced Photocatalytic H2O2 Evolution. Engineering, 2023, 25, 214-221.	6.7	12
2	Recent advances in fieldâ€effect transistor sensing strategies for fast and highly efficient analysis of heavy metal ions. Electrochemical Science Advances, 2022, 2, e2100137.	2.8	10
3	Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4. Chemical Engineering Journal, 2022, 428, 132531.	12.7	86
4	H2S sensing under various humidity conditions with Ag nanoparticle functionalized Ti3C2Tx MXene field-effect transistors. Journal of Hazardous Materials, 2022, 424, 127492.	12.4	48
5	Selective Removal of Phenolic Compounds by Peroxydisulfate Activation: Inherent Role of Hydrophobicity and Interface ROS. Environmental Science & Technology, 2022, 56, 2665-2676.	10.0	83
6	Interconnected Mn-Doped Ni(OH) ₂ Nanosheet Layer for Bifunctional Urea Oxidation and Hydrogen Evolution: The Relation between Current Drop and Urea Concentration during the Long-Term Operation. ACS ES&T Engineering, 2022, 2, 853-862.	7.6	16
7	Promotion of Phenol Electro-oxidation by Oxygen Evolution Reaction on an Active Electrode for Efficient Pollution Control and Hydrogen Evolution. Environmental Science & Technology, 2022, 56, 5753-5762.	10.0	22
8	Photocatalytic H2O2 production driven by cyclodextrin-pyrimidine polymer in a wide pH range without electron donor or oxygen aeration. Applied Catalysis B: Environmental, 2022, 314, 121485.	20.2	41
9	Single-Atom Pt-Functionalized Ti ₃ C ₂ T _{<i>x</i>} Field-Effect Transistor for Volatile Organic Compound Gas Detection. ACS Sensors, 2022, 7, 1874-1882.	7.8	51
10	Demand, status, and prospect of antibiotics detection in the environment. Sensors and Actuators B: Chemical, 2022, 369, 132383.	7.8	43
11	Enhanced peroxydisulfate oxidation via Cu(III) species with a Cu-MOF-derived Cu nanoparticle and 3D graphene network. Journal of Hazardous Materials, 2021, 403, 123691.	12.4	38
12	Thio-groups decorated covalent triazine frameworks for selective mercury removal. Journal of Hazardous Materials, 2021, 403, 123702.	12.4	60
13	A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. International Journal of Hydrogen Energy, 2021, 46, 3056-3089.	7.1	87
14	Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants. Chemical Engineering Journal, 2021, 413, 127545.	12.7	102
15	Novel insights into the unique intrinsic sensing behaviors of 2D nanomaterials for volatile organic compounds: from graphene to MoS ₂ and black phosphorous. Journal of Materials Chemistry A, 2021, 9, 14411-14421.	10.3	22
16	Rapid synthesis of multifunctional β-cyclodextrin nanospheres as alkali-responsive nanocarriers and selective antibiotic adsorbents. Chemical Communications, 2021, 57, 1161-1164.	4.1	11
17	Ultrasensitive detection of disinfection byproduct trichloroacetamide in drinking water with Ag nanoprism@MoS2 heterostructure-based electrochemical sensor. Sensors and Actuators B: Chemical, 2021, 332, 129526.	7.8	28
18	Label-Free, Fast Response, and Simply Operated Silver Ion Detection with a Ti ₃ C ₂ T <i>_x</i> MXene Field-Effect Transistor. Analytical Chemistry, 2021, 93, 8010-8018.	6.5	35

#	Article	IF	CITATIONS
19	Bifunctional Electrolyzation for Simultaneous Organic Pollutant Degradation and Hydrogen Generation. ACS ES&T Engineering, 2021, 1, 1360-1368.	7.6	16
20	Functionâ€Targeted Lanthanideâ€Anchored Polyoxometalate–Cyclodextrin Assembly: Discriminative Sensing of Inorganic Phosphate and Organophosphate. Advanced Functional Materials, 2021, 31, 2104572.	14.9	25
21	Ti3C2Tx MXene sensor for rapid Hg2+ analysis in high salinity environment. Journal of Hazardous Materials, 2021, 418, 126301.	12.4	27
22	Rapid and Sensitive Detection of <i>Mycobacterium tuberculosis</i> by an Enhanced Nanobiosensor. ACS Sensors, 2021, 6, 3367-3376.	7.8	26
23	The role of Fe-Nx single-atom catalytic sites in peroxymonosulfate activation: Formation of surface-activated complex and non-radical pathways. Chemical Engineering Journal, 2021, 423, 130250.	12.7	88
24	Bifunctional Catalytic Cooperativity on Nanoedge: Oriented Ce–Fe Bimetallic Fenton Electrocatalysts for Organic Pollutant Control. ACS ES&T Engineering, 2021, 1, 1618-1632.	7.6	16
25	MOF-derived metal-free N-doped porous carbon mediated peroxydisulfate activation via radical and non-radical pathways: Role of graphitic N and C O. Chemical Engineering Journal, 2020, 380, 122584.	12.7	124
26	Aeration-assisted sulfite activation with ferrous for enhanced chloramphenicol degradation. Chemosphere, 2020, 238, 124599.	8.2	21
27	Nickel-phosphate pompon flowers nanostructured network enables the sensitive detection of microRNA. Talanta, 2020, 209, 120511.	5.5	11
28	Tuning layered Fe-doped g-C3N4 structure through pyrolysis for enhanced Fenton and photo-Fenton activities. Carbon, 2020, 159, 461-470.	10.3	111
29	Heterogeneous Electro-Fenton catalysis with HKUST-1-derived Cu@C decorated in 3D graphene network. Chemosphere, 2020, 243, 125423.	8.2	47
30	One-pot synthesis of ultrafine NiO loaded and Ti3+ in-situ doped TiO2 induced by cyclodextrin for efficient visible-light photodegradation of hydrophobic pollutants. Chemical Engineering Journal, 2020, 402, 126211.	12.7	44
31	Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS ₂ Field-Effect Transistor at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 50610-50618.	8.0	64
32	Highly efficient chloramphenicol degradation by UV and UV/H 2 O 2 processes based on LED light source. Water Environment Research, 2020, 92, 2049-2059.	2.7	6
33	MnO2 cacti-like nanostructured platform powers the enhanced electrochemical immunobiosensing of cortisol. Sensors and Actuators B: Chemical, 2020, 317, 128134.	7.8	16
34	Catalytic Performances of NiCuP@rGO and NiCuN@rGO for Oxygen Reduction and Oxygen Evolution Reactions in Alkaline Electrolyte. ChemistrySelect, 2020, 5, 5855-5863.	1.5	4
35	SnO2 nanoparticles incorporated CuO nanopetals on graphene for high-performance room-temperature NO2 sensor. Chemical Physics Letters, 2020, 750, 137485.	2.6	21
36	Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: A review. Environmental Research, 2020, 188, 109764.	7.5	71

#	Article	IF	CITATIONS
37	Ultrasensitive sensors based on aluminum oxide-protected reduced graphene oxide for phosphate ion detection in real water. Molecular Systems Design and Engineering, 2020, 5, 936-942.	3.4	12
38	High Anti-Interference Ti ₃ C ₂ T <i>_x</i> MXene Field-Effect-Transistor-Based Alkali Indicator. ACS Applied Materials & Interfaces, 2020, 12, 32970-32978.	8.0	28
39	Exploring the mechanism of the Fe(<scp>iii</scp>)-activated Fenton-like reaction based on a quantitative study. New Journal of Chemistry, 2020, 44, 8952-8959.	2.8	12
40	Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors. Nano-Micro Letters, 2020, 12, 95.	27.0	73
41	Field-Effect Transistor Based on Percolation Network of Reduced Graphene Oxide for Real-Time ppb-Level Detection of Lead Ions in Water. ECS Journal of Solid State Science and Technology, 2020, 9, 115012.	1.8	15
42	Highly sensitive and selective fluorescent detection of phosphate in water environment by a functionalized coordination polymer. Water Research, 2019, 163, 114883.	11.3	48
43	The role of structural elements and its oxidative products on the surface of ferrous sulfide in reducing the electron-withdrawing groups of tetracycline. Chemical Engineering Journal, 2019, 378, 122195.	12.7	24
44	Electrochemically Sensing of Trichloroacetic Acid with Iron(II) Phthalocyanine and Zn-Based Metal Organic Framework Nanocomposites. ACS Sensors, 2019, 4, 1934-1941.	7.8	71
45	Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosensors and Bioelectronics, 2019, 145, 111711.	10.1	68
46	Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media. Molecular Systems Design and Engineering, 2019, 4, 491-502.	3.4	17
47	Highly luminescent sensing for nitrofurans and tetracyclines in water based on zeolitic imidazolate framework-8 incorporated with dyes. Talanta, 2019, 204, 344-352.	5.5	71
48	Hexagonal K ₂ W ₄ O ₁₃ Nanowires for the Adsorption of Methylene Blue. ACS Applied Nano Materials, 2019, 2, 3802-3812.	5.0	14
49	Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge. Chemosphere, 2019, 232, 45-53.	8.2	39
50	Nanocomposites of Zr(IV)-Based Metal–Organic Frameworks and Reduced Graphene Oxide for Electrochemically Sensing Ciprofloxacin in Water. ACS Applied Nano Materials, 2019, 2, 2367-2376.	5.0	139
51	Prussian blue analog-derived 2D ultrathin CoFe ₂ O ₄ nanosheets as high-activity electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. Journal of Materials Chemistry A, 2019, 7, 7328-7332.	10.3	75
52	Recent advances in sensitive and rapid mercury determination with graphene-based sensors. Journal of Materials Chemistry A, 2019, 7, 6616-6630.	10.3	73
53	Metal-organic framework-derived core-shell-structured nitrogen-doped CoCx/FeCo@C hybrid supported by reduced graphene oxide sheets as high performance bifunctional electrocatalysts for ORR and OER. Journal of Catalysis, 2019, 371, 185-195.	6.2	78
54	Hafnium sulphide-carbon nanotube composite as Pt support and active site-enriched catalyst for high performance methanol and ethanol oxidations in alkaline electrolytes. Journal of Power Sources, 2019, 410-411, 204-212.	7.8	19

#	Article	IF	CITATIONS
55	Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosensors and Bioelectronics, 2019, 126, 664-671.	10.1	83
56	Highly efficient degradation of dimethyl phthalate from Cu(II) and dimethyl phthalate wastewater by EDTA enhanced ozonation: Performance, intermediates and mechanism. Journal of Hazardous Materials, 2019, 366, 378-385.	12.4	33
57	Activation of persulfate with metal–organic framework-derived nitrogen-doped porous Co@C nanoboxes for highly efficient p-Chloroaniline removal. Chemical Engineering Journal, 2019, 358, 408-418.	12.7	177
58	Rapid detection of nutrients with electronic sensors: a review. Environmental Science: Nano, 2018, 5, 837-862.	4.3	41
59	Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungsten disulfide/tungsten trioxide ternary nanohybrids. Nano Energy, 2018, 47, 66-73.	16.0	71
60	Strategies for Improving the Performance of Sensors Based on Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1705642.	21.0	114
61	Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sensors and Actuators B: Chemical, 2018, 256, 1011-1020.	7.8	97
62	In-situ synthesized TiC@CNT as high-performance catalysts for oxygen reduction reaction. Carbon, 2018, 126, 566-573.	10.3	23
63	Real-time electronic sensor based on black phosphorus/Au NPs/DTT hybrid structure: Application in arsenic detection. Sensors and Actuators B: Chemical, 2018, 257, 214-219.	7.8	41
64	In Operando Impedance Spectroscopic Analysis on NiO–WO ₃ Nanorod Heterojunction Random Networks for Room-Temperature H ₂ S Detection. ACS Omega, 2018, 3, 18685-18693.	3.5	18
65	Enhanced Photocatalytic Removal of Tetrabromobisphenol A by Magnetic CoO@graphene Nanocomposites under Visible-Light Irradiation. ACS Applied Energy Materials, 2018, 1, 2698-2708.	5.1	42
66	Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors. Environmental Science: Nano, 2018, 5, 1990-1999.	4.3	41
67	Graphene Field-Effect Transistor Sensors. , 2018, , 113-132.		9
68	3D Edgeâ€Enriched Fe ₃ C@C Nanocrystals with a Core–Shell Structure Grown on Reduced Graphene Oxide Networks for Efficient Oxygen Reduction Reaction. ChemSusChem, 2018, 11, 3292-3298.	6.8	25
69	Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Letters, 2018, 10, 64.	27.0	389
70	Organometallic Precursor-Derived SnO ₂ /Sn-Reduced Graphene Oxide Sandwiched Nanocomposite Anode with Superior Lithium Storage Capacity. ACS Applied Materials & Interfaces, 2018, 10, 26170-26177.	8.0	32
71	Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosensors and Bioelectronics, 2017, 89, 505-510.	10.1	206
72	Reduced graphene oxide intercalated Co ₂ C or Co ₄ N nanoparticles as an efficient and durable fuel cell catalyst for oxygen reduction. Journal of Materials Chemistry A, 2017, 5. 2972-2980.	10.3	85

#	Article	IF	CITATIONS
73	Ultrasensitive detection of orthophosphate ions with reduced graphene oxide/ferritin field-effect transistor sensors. Environmental Science: Nano, 2017, 4, 856-863.	4.3	28
74	Graphene-based electronic biosensors. Journal of Materials Research, 2017, 32, 2954-2965.	2.6	24
75	Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen. Scientific Reports, 2017, 7, 10974.	3.3	112
76	Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 2017, 46, 6872-6904.	38.1	316
77	Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring. ACS Sensors, 2017, 2, 1653-1661.	7.8	57
78	Decorating in situ ultrasmall tin particles on crumpled N-doped graphene for lithium-ion batteries with a long life cycle. Journal of Power Sources, 2016, 328, 482-491.	7.8	38
79	Nitrogen-boron Dipolar-doped Nanocarbon as a High-efficiency Electrocatalyst for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 222, 481-487.	5.2	37
80	Ultrasensitive Mercury Ion Detection Using DNA-Functionalized Molybdenum Disulfide Nanosheet/Gold Nanoparticle Hybrid Field-Effect Transistor Device. ACS Sensors, 2016, 1, 295-302.	7.8	103
81	Nanomaterialâ€enabled Rapid Detection of Water Contaminants. Small, 2015, 11, 5336-5359.	10.0	108
82	Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin. RSC Advances, 2015, 5, 38660-38664.	3.6	22
83	Three-dimensional carbon-coated Si/rGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications. Nano Energy, 2015, 15, 679-687.	16.0	55
84	Metallic CoS ₂ nanowire electrodes for high cycling performance supercapacitors. Nanotechnology, 2015, 26, 494001.	2.6	52
85	Amorphous MoS _x Cl _y electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy and Environmental Science, 2015, 8, 862-868.	30.8	183
86	Hydrogen Evolution: Perpendicularly Oriented MoSe ₂ /Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution (Small 4/2015). Small, 2015, 11, 508-508.	10.0	4
87	Hybrid Electrocatalysis: An Advanced Nitrogenâ€Doped Graphene/Cobaltâ€Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting (Adv. Funct. Mater.) Tj ETQq1	1 0478431	41rgBT /Ove
88	Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews, 2015, 44, 2108-2121.	38.1	269
89	Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. Journal of Materials Chemistry A, 2015, 3, 7986-7993.	10.3	95
90	NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode. Scientific Reports, 2015, 5, 11919.	3.3	92

#	Article	IF	CITATIONS
91	Real-time detection of mercury ions in water using a reduced graphene oxide/DNA field-effect transistor with assistance of a passivation layer. Sensing and Bio-Sensing Research, 2015, 5, 97-104.	4.2	38
92	One-pot synthesis of high-performance Co/graphene electrocatalysts for glucose fuel cells free of enzymes and precious metals. Chemical Communications, 2015, 51, 9354-9357.	4.1	52
93	Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6, 8632.	12.8	598
94	One-step, continuous synthesis of a spherical Li4Ti5O12/graphene composite as an ultra-long cycle life lithium-ion battery anode. NPG Asia Materials, 2015, 7, e224-e224.	7.9	30
95	An Advanced Nitrogenâ€Doped Graphene/Cobaltâ€Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting. Advanced Functional Materials, 2015, 25, 872-882.	14.9	683
96	Three-dimensional graphene-based composites for energy applications. Nanoscale, 2015, 7, 6924-6943.	5.6	241
97	A high-performance catalyst support for methanol oxidation with graphene and vanadium carbonitride. Nanoscale, 2015, 7, 1301-1307.	5.6	75
98	Perpendicularly Oriented MoSe ₂ /Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution. Small, 2015, 11, 414-419.	10.0	276
99	Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosensors and Bioelectronics, 2014, 54, 251-257.	10.1	208
100	Metalâ^'Organic Frameworkâ€Derived Nitrogenâ€Doped Coreâ€Shellâ€Structured Porous Fe/Fe ₃ C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1400337.	19.5	512
101	Nanocarbon-based gas sensors: progress and challenges. Journal of Materials Chemistry A, 2014, 2, 5573.	10.3	202
102	Controllable Synthesis of Hollow Si Anode for Long ycleâ€Life Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 4326-4332.	21.0	193
103	Hierarchical Nanohybrids with Porous CNT-Networks Decorated Crumpled Graphene Balls for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2014, 6, 9881-9889.	8.0	94
104	High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy and Environmental Science, 2014, 7, 609-616.	30.8	605
105	Enzymeless Glucose Detection Based on CoO/Graphene Microsphere Hybrids. Electroanalysis, 2014, 26, 1326-1334.	2.9	48
106	Instantaneous Reduction of Graphene Oxide Paper for Supercapacitor Electrodes with Unimpeded Liquid Permeation. Journal of Physical Chemistry C, 2014, 118, 13493-13502.	3.1	19
107	Hydrothermal synthesis of vanadium nitride and modulation of its catalytic performance for oxygen reduction reaction. Nanoscale, 2014, 6, 9608.	5.6	93
108	Synthesizing Nitrogen-Doped Activated Carbon and Probing its Active Sites for Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Applied Materials & 2014, 10, 7464-7470.	8.0	157

#	Article	IF	CITATIONS
109	Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific Reports, 2014, 4, 4684.	3.3	433
110	Graphene Coupled with Nanocrystals: Opportunities and Challenges for Energy and Sensing Applications. Journal of Physical Chemistry Letters, 2013, 4, 2441-2454.	4.6	80
111	Effects of N and F doping on structure and photocatalytic properties of anatase TiO2 nanoparticles. RSC Advances, 2013, 3, 16657.	3.6	43
112	TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. Journal of Power Sources, 2013, 234, 100-106.	7.8	136
113	CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries. Nanoscale Research Letters, 2013, 8, 499.	5.7	25
114	Nitrogen-doped graphene–vanadium carbide hybrids as a high-performance oxygen reduction reaction electrocatalyst support in alkaline media. Journal of Materials Chemistry A, 2013, 1, 13404.	10.3	50
115	Hierarchical vertically oriented graphene as a catalytic counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 188-193.	10.3	85
116	Influence of partial substitution of Mo for Cr on structure and hydrogen storage characteristics of non-stoichiometric Laves phase TiCrB0.9 alloy. International Journal of Hydrogen Energy, 2013, 38, 11955-11963.	7.1	10
117	Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective proteindetection. Biosensors and Bioelectronics, 2013, 42, 186-192.	10.1	40
118	Silicon nanotube anode for lithium-ion batteries. Electrochemistry Communications, 2013, 29, 67-70.	4.7	236
119	Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. Journal of Materials Chemistry A, 2013, 1, 4462.	10.3	129
120	Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst, The, 2013, 138, 2877.	3.5	125
121	Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale, 2013, 5, 3620.	5.6	82
122	Direct Growth of Vertically-oriented Graphene for Field-Effect Transistor Biosensor. Scientific Reports, 2013, 3, 1696.	3.3	173
123	Crumpled Nitrogenâ€Đoped Graphene Nanosheets with Ultrahigh Pore Volume for Highâ€Performance Supercapacitor. Advanced Materials, 2012, 24, 5610-5616.	21.0	880
124	Ultrafast hydrogen sensing through hybrids of semiconducting single-walled carbon nanotubes and tin oxide nanocrystals. Nanoscale, 2012, 4, 1275.	5.6	51
125	Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. Journal of Materials Chemistry, 2012, 22, 11009.	6.7	274
126	Ag nanocrystal as a promoter for carbon nanotube-based room-temperature gas sensors. Nanoscale, 2012, 4, 5887.	5.6	71

#	Article	IF	CITATIONS
127	Hg(II) Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles. Analytical Chemistry, 2012, 84, 4057-4062.	6.5	224
128	Modulating Gas Sensing Properties of CuO Nanowires through Creation of Discrete Nanosized p–n Junctions on Their Surfaces. ACS Applied Materials & Interfaces, 2012, 4, 4192-4199.	8.0	125
129	A General Approach to One-Pot Fabrication of Crumpled Graphene-Based Nanohybrids for Energy Applications. ACS Nano, 2012, 6, 7505-7513.	14.6	201
130	Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 3300.	6.7	97
131	Controllable photoelectron transfer in CdSe nanocrystal–carbon nanotube hybrid structures. Nanoscale, 2012, 4, 742-746.	5.6	15
132	Graphene oxide and its reduction: modeling and experimental progress. RSC Advances, 2012, 2, 2643.	3.6	463
133	Nitrogenâ€Enriched Coreâ€Shell Structured Fe/Fe ₃ Câ€C Nanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2012, 24, 1399-1404.	21.0	517
134	Nitrogen-Enriched Core-Shell Structured Fe/Fe3C-C Nanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction (Adv. Mater. 11/2012). Advanced Materials, 2012, 24, 1398-1398.	21.0	8
135	Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission. Energy and Environmental Science, 2011, 4, 2525.	30.8	66
136	Selective Deposition of CdSe Nanoparticles on Reduced Graphene Oxide to Understand Photoinduced Charge Transfer in Hybrid Nanostructures. ACS Applied Materials & Interfaces, 2011, 3, 2703-2709.	8.0	25
137	Carbon Nanotube with Chemically Bonded Graphene Leaves for Electronic and Optoelectronic Applications. Journal of Physical Chemistry Letters, 2011, 2, 1556-1562.	4.6	190
138	A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale, 2011, 3, 2849.	5.6	99
139	Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Research, 2011, 4, 921-930.	10.4	84
140	Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 2011, 6, 202.	5.7	123
141	Metal Nitride/Graphene Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene Electrocatalyst. Advanced Materials, 2011, 23, 5445-5450.	21.0	171
142	Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon, 2011, 49, 1849-1858.	10.3	120
143	Note: Continuous synthesis of uniform vertical graphene on cylindrical surfaces. Review of Scientific Instruments, 2011, 82, 086116.	1.3	8
144	Specific Protein Detection Using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticleâ€Antibody Conjugates. Advanced Materials, 2010, 22, 3521-3526.	21.0	444

#	Article	IF	CITATIONS
145	Specific biosensing using carbon nanotubes functionalized with gold nanoparticle–antibody conjugates. Carbon, 2010, 48, 479-486.	10.3	39
146	One-dimensional tungsten oxide growth through a grain-by-grain buildup process. Chemical Physics Letters, 2010, 485, 64-68.	2.6	11
147	The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chemical Physics Letters, 2010, 485, 171-175.	2.6	68
148	Protein Viability on Au Nanoparticles during an Electrospray and Electrostatic-Force-Directed Assembly Process. Journal of Nanomaterials, 2010, 2010, 1-6.	2.7	1
149	Nanoscale Discharge Electrode for Minimizing Ozone Emission from Indoor Corona Devices. Environmental Science & Technology, 2010, 44, 6337-6342.	10.0	32
150	Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Research, 2009, 2, 192-200.	10.4	145
151	Carbon-nanotube-assisted transmission electron microscopy characterization of aerosol nanoparticles. Journal of Aerosol Science, 2009, 40, 180-184.	3.8	5
152	Microstructural analysis of Ga2S3–2MCl (M = K, Rb, Cs) glasses using Raman scattering. Journal of Non-Crystalline Solids, 2008, 354, 1175-1178.	3.1	1
153	New chalcohalide glasses from the GeS2–In2S3–CsCl system. Journal of Non-Crystalline Solids, 2008, 354, 1303-1307.	3.1	11
154	Microstructure and thermal properties of the GeS2–In2S3–CsI glassy system. Journal of Non-Crystalline Solids, 2008, 354, 1298-1302.	3.1	12
155	Coating carbon nanotubes with colloidal nanocrystals by combining an electrospray technique with directed assembly using an electrostatic field. Nanotechnology, 2008, 19, 455610.	2.6	18
156	Fabrication and characterization of microwave immunosensors based on organic semiconductors with nanogold-labeled antibody. , 2008, 2008, 2381-4.		2
157	RIPENING OF SILVER NANOPARTICLES ON CARBON NANOTUBES. Nano, 2007, 02, 149-156.	1.0	26
158	Structure dependence of ultrafast third-order optical nonlinearity for GeS2–In2S3–CsI chalcohalide glasses. Solid State Communications, 2007, 142, 453-456.	1.9	17
159	Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses. Journal of Physics and Chemistry of Solids, 2007, 68, 158-161.	4.0	16
160	Raman spectroscopic analysis of GeS2–Ga2S3–PbI2 chalcohalide glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 1351-1356.	3.9	28
161	Micro-structural study of the GeS2–In2S3–KCl glassy system by Raman scattering. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 1039-1045.	3.9	12
162	Raman scattering studies of the Ge–In sulfide glasses. Solid State Communications, 2006, 137, 408-412.	1.9	49

#	Article	IF	CITATIONS
163	Formation and properties of the GeS2–In2S3–KCl new chalcohalide glassy system. Materials Letters, 2006, 60, 741-745.	2.6	20
164	Raman scattering studies of the GeS2–Ga2S3–CsCl glassy system. Solid State Communications, 2005, 133, 327-332.	1.9	53