Aravinda M De Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8768798/publications.pdf

Version: 2024-02-01

146 papers 16,499 citations

52 h-index 119 g-index

159 all docs

159 docs citations

times ranked

159

22336 citing authors

#	Article	IF	Citations
1	SARS-CoV-2 mRNA vaccine induces robust specific and cross-reactive IgG and unequal neutralizing antibodies in naive and previously infected people. Cell Reports, 2022, 38, 110336.	2.9	41
2	A prospective study of asymptomatic SARS-CoV-2 infection among individuals involved in academic research under limited operations during the COVID-19 pandemic. PLoS ONE, 2022, 17, e0267353.	1.1	5
3	Generation of Mature DENVs via Genetic Modification and Directed Evolution. MBio, 2022, 13, e0038622.	1.8	11
4	Ethnoracial Disparities in SARS-CoV-2 Seroprevalence in a Large Cohort of Individuals in Central North Carolina from April to December 2020. MSphere, 2022, 7, e0084121.	1.3	6
5	A conserved set of mutations for stabilizing soluble envelope protein dimers from dengue and Zika viruses to advance the development of subunit vaccines. Journal of Biological Chemistry, 2022, 298, 102079.	1.6	2
6	Vaccine-induced antibodies to contemporary strains of dengue virus type 4 show a mechanistic correlate of protective immunity. Cell Reports, 2022, 39, 110930.	2.9	3
7	Determining dengue virus serostatus by indirect IgG ELISA compared with focus reduction neutralisation test in children in Cebu, Philippines: a prospective population-based study. The Lancet Global Health, 2021, 9, e44-e51.	2.9	29
8	Evaluation of a new point-of-care test to determine prior dengue infection for potential use in pre-vaccination screening. Clinical Microbiology and Infection, 2021, 27, 904-908.	2.8	8
9	Production of the Receptor-binding Domain of the Viral Spike Proteins from 2003 and 2019 SARS CoVs and the Four Common Human Coronaviruses for Serologic Assays and Inhibitor Screening. Bio-protocol, 2021, 11, e4026.	0.2	O
10	Neurodevelopmental Outcomes of Children Following In Utero Exposure to Zika in Nicaragua. Clinical Infectious Diseases, 2021, 72, e146-e153.	2.9	22
11	Performance of Dried Blood Spots Compared with Serum Samples for Measuring Dengue Seroprevalence in a Cohort of Children in Cebu, Philippines. American Journal of Tropical Medicine and Hygiene, 2021, 104, 130-135.	0.6	8
12	A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans. Nature Communications, 2021, 12, 1102.	5.8	40
13	Defining levels of dengue virus serotype-specific neutralizing antibodies induced by a live attenuated tetravalent dengue vaccine (TAK-003). PLoS Neglected Tropical Diseases, 2021, 15, e0009258.	1.3	27
14	A Novel Antigenic Site Spanning Domains I and III of the Zika Virus Envelope Glycoprotein Is the Target of Strongly Neutralizing Human Monoclonal Antibodies. Journal of Virology, 2021, 95, .	1.5	2
15	Dengue vaccine breakthrough infections reveal properties of neutralizing antibodies linked to protection. Journal of Clinical Investigation, 2021, 131, .	3.9	22
16	Sex Disparities and Neutralizing-Antibody Durability to SARS-CoV-2 Infection in Convalescent Individuals. MSphere, 2021, 6, e0027521.	1.3	36
17	Clinical and Epidemiological Features of Acute Zika Virus Infections in Le \tilde{A}^3 n, Nicaragua. American Journal of Tropical Medicine and Hygiene, 2021, 105, 924-930.	0.6	2
18	Designed, highly expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies. Science Advances, 2021, 7, eabg4084.	4.7	22

#	Article	IF	CITATIONS
19	Seroepidemiology of SARS-CoV-2 infections in an urban population-based cohort in León, Nicaragua. Epidemiology and Infection, 2021, 149, e247.	1.0	4
20	Natural immunogenic properties of bioinformatically predicted linear B-cell epitopes of dengue envelope and pre-membrane proteins. BMC Immunology, 2021, 22, 71.	0.9	1
21	Novel Assay to Measure Seroprevalence of Zika Virus in the Philippines. Emerging Infectious Diseases, 2021, 27, 3073-3081.	2.0	3
22	Antigenic Variation of the Dengue Virus 2 Genotypes Impacts the Neutralization Activity of Human Antibodies in Vaccinees. Cell Reports, 2020, 33, 108226.	2.9	43
23	SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 2020, 370, 1464-1468.	6.0	808
24	Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, 2020, 370, 89-94.	6.0	1,036
25	Zika virus infection enhances future risk of severe dengue disease. Science, 2020, 369, 1123-1128.	6.0	171
26	Identification of Dengue Virus Serotype 3 Specific Antigenic Sites Targeted by Neutralizing Human Antibodies. Cell Host and Microbe, 2020, 27, 710-724.e7.	5.1	25
27	SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 2020, 182, 429-446.e14.	13.5	1,257
28	Effective control of early Zika virus replication by Dengue immunity is associated to the length of time between the 2 infections but not mediated by antibodies. PLoS Neglected Tropical Diseases, 2020, 14, e0008285.	1.3	17
29	The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Science Immunology, 2020, 5, .	5.6	772
30	Severe Dengue Epidemic, Sri Lanka, 2017. Emerging Infectious Diseases, 2020, 26, 682-691.	2.0	37
31	Dimerization of Dengue Virus E Subunits Impacts Antibody Function and Domain Focus. Journal of Virology, 2020, 94, .	1.5	9
32	Serologic surveillance of maternal Zika infection in a prospective cohort in Leon, Nicaragua during the peak of the Zika epidemic. PLoS ONE, 2020, 15, e0230692.	1.1	8
33	Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 2020, 181, 1489-1501.e15.	13.5	3,220
34	Structural differences between dengue viruses circulating in humans and viruses used for vaccine research. Future Virology, 2019, 14, 379-381.	0.9	0
35	Characterization of Magnitude and Antigen Specificity of HLA-DP, DQ, and DRB3/4/5 Restricted DENV-Specific CD4+ T Cell Responses. Frontiers in Immunology, 2019, 10, 1568.	2.2	35
36	ZikaPLAN: addressing the knowledge gaps and working towards a research preparedness network in the Americas. Global Health Action, 2019, 12, 1666566.	0.7	13

#	Article	IF	CITATIONS
37	Oligomeric state of the ZIKV E protein defines protective immune responses. Nature Communications, 2019, 10, 4606.	5.8	22
38	Tracking the polyclonal neutralizing antibody response to a dengue virus serotype 1 type-specific epitope across two populations in Asia and the Americas. Scientific Reports, 2019, 9, 16258.	1.6	10
39	Time elapsed between Zika and dengue virus infections affects antibody and T cell responses. Nature Communications, 2019, 10, 4316.	5.8	31
40	Role of Zika Virus Envelope Protein Domain III as a Target of Human Neutralizing Antibodies. MBio, 2019, 10, .	1.8	26
41	Beyond Neutralizing Antibody Levels: The Epitope Specificity of Antibodies Induced by National Institutes of Health Monovalent Dengue Virus Vaccines. Journal of Infectious Diseases, 2019, 220, 219-227.	1.9	22
42	Longitudinal analysis of acute and convalescent B cell responses in a human primary dengue serotype 2 infection model. EBioMedicine, 2019, 41, 465-478.	2.7	31
43	Impact of pre-existing dengue immunity on human antibody and memory B cell responses to Zika. Nature Communications, 2019, 10, 938.	5.8	44
44	Dengue type 1 viruses circulating in humans are highly infectious and poorly neutralized by human antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 227-232.	3.3	69
45	Human antibody response to Zika targets type-specific quaternary structure epitopes. JCI Insight, 2019, 4, .	2.3	45
46	Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins. Journal of Biological Chemistry, 2018, 293, 8922-8933.	1.6	22
47	Longitudinal Analysis of Antibody Cross-neutralization Following Zika Virus and Dengue Virus Infection in Asia and the Americas. Journal of Infectious Diseases, 2018, 218, 536-545.	1.9	124
48	Development of Envelope Protein Antigens To Serologically Differentiate Zika Virus Infection from Dengue Virus Infection. Journal of Clinical Microbiology, 2018, 56, .	1.8	53
49	Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virology Journal, 2018, 15, 60.	1.4	42
50	Optimization of Surface Display of DENV2 E Protein on a Nanoparticle to Induce Virus Specific Neutralizing Antibody Responses. Bioconjugate Chemistry, 2018, 29, 1544-1552.	1.8	10
51	Delineating the serotype-specific neutralizing antibody response to a live attenuated tetravalent dengue vaccine. Vaccine, 2018, 36, 2403-2410.	1.7	7
52	Clinical development and regulatory points for consideration for second-generation live attenuated dengue vaccines. Vaccine, 2018, 36, 3411-3417.	1.7	52
53	Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029371.	2.3	29
54	Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus–Specific CD8+ T Cells. Journal of Immunology, 2018, 201, 3487-3491.	0.4	70

#	Article	IF	CITATIONS
55	Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype. PLoS Neglected Tropical Diseases, 2018, 12, e0006793.	1.3	22
56	Genetic Variation between Dengue Virus Type 4 Strains Impacts Human Antibody Binding and Neutralization. Cell Reports, 2018, 25, 1214-1224.	2.9	50
57	Analyzing the Human Serum Antibody Responses to a Live Attenuated Tetravalent Dengue Vaccine Candidate. Journal of Infectious Diseases, 2018, 217, 1932-1941.	1.9	23
58	The Molecular Specificity of the Human Antibody Response to Dengue Virus Infections. Advances in Experimental Medicine and Biology, 2018, 1062, 63-76.	0.8	23
59	Viral Entry and NS1 as Potential Antiviral Drug Targets. Advances in Experimental Medicine and Biology, 2018, 1062, 107-113.	0.8	4
60	A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Neglected Tropical Diseases, 2018, 12, e0006191.	1.3	67
61	Human dengue virus serotype 2 neutralizing antibodies target two distinct quaternary epitopes. PLoS Pathogens, 2018, 14, e1006934.	2.1	35
62	Seroepidemiology of Dengue, Zika, and Yellow Fever Viruses among Children in the Democratic Republic of the Congo. American Journal of Tropical Medicine and Hygiene, 2018, 99, 756-763.	0.6	30
63	Dissecting antibodies induced by a chimeric yellow fever-dengue, live-attenuated, tetravalent dengue vaccine (CYD-TDV) in naÃ-ve and dengue exposed individuals. Journal of Infectious Diseases, 2017, 215, jiw576.	1.9	97
64	Epitope Addition and Ablation via Manipulation of a Dengue Virus Serotype 1 Infectious Clone. MSphere, 2017, 2, .	1.3	14
65	Host response: Cross-fit T cells battle Zika virus. Nature Microbiology, 2017, 2, 17082.	5.9	6
66	Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination. Journal of Virology, 2017, 91, .	1.5	44
67	Prior Dengue Virus Exposure Shapes T Cell Immunity to Zika Virus in Humans. Journal of Virology, 2017, 91, .	1.5	148
68	Analysis of Individuals from a Dengue-Endemic Region Helps Define the Footprint and Repertoire of Antibodies Targeting Dengue Virus 3 Type-Specific Epitopes. MBio, 2017, 8, .	1.8	13
69	Immune correlates of protection for dengue: State of the art and research agenda. Vaccine, 2017, 35, 4659-4669.	1.7	81
70	Transplantation of a quaternary structure neutralizing antibody epitope from dengue virus serotype 3 into serotype 4. Scientific Reports, 2017, 7, 17169.	1.6	23
71	Rapid, directed transport of DC-SIGN clusters in the plasma membrane. Science Advances, 2017, 3, eaao1616.	4.7	12
72	In Vitro Assembly and Stabilization of Dengue and Zika Virus Envelope Protein Homo-Dimers. Scientific Reports, 2017, 7, 4524.	1.6	41

#	Article	IF	CITATIONS
73	Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nature Communications, 2017, 8, 15674.	5.8	178
74	Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection. Emerging Infectious Diseases, 2017, 23, 773-781.	2.0	141
75	Global Assessment of Dengue Virus-Specific CD4+ T Cell Responses in Dengue-Endemic Areas. Frontiers in Immunology, 2017, 8, 1309.	2.2	77
76	Dissecting the human serum antibody response to secondary dengue virus infections. PLoS Neglected Tropical Diseases, 2017, 11, e0005554.	1.3	63
77	Unsuspected Dengue as a Cause of Acute Febrile Illness in Children and Adults in Western Nicaragua. PLoS Neglected Tropical Diseases, 2016, 10, e0005026.	1.3	11
78	Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses. PLoS Neglected Tropical Diseases, 2016, 10, e0005071.	1.3	31
79	DC-SIGN Mediated Dengue Virus Entry into Cells. Biophysical Journal, 2016, 110, 570a.	0.2	1
80	Ticks Take Cues from Mammalian Interferon. Cell Host and Microbe, 2016, 20, 3-4.	5.1	3
81	Dengue Virus prM-Specific Human Monoclonal Antibodies with Virus Replication-Enhancing Properties Recognize a Single Immunodominant Antigenic Site. Journal of Virology, 2016, 90, 780-789.	1.5	50
82	Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1. Journal of Virology, 2016, 90, 5090-5097.	1.5	30
83	The Emerging Zika Virus Epidemic in the Americas. JAMA - Journal of the American Medical Association, 2016, 315, 1945.	3.8	42
84	Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies. Frontiers in Microbiology, 2015, 6, 1005.	1.5	33
85	Source and Purity of Dengue-Viral Preparations Impact Requirement for Enhancing Antibody to Induce Elevated IL-1Î ² Secretion: A Primary Human Monocyte Model. PLoS ONE, 2015, 10, e0136708.	1.1	6
86	Dengue virus infection elicits highly polarized CX3CR1 ⁺ cytotoxic CD4 ⁺ T cells associated with protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4256-63.	3.3	266
87	Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science, 2015, 349, 88-91.	6.0	208
88	Spleen Tyrosine Kinase (Syk) Mediates IL- $1\hat{l}^2$ Induction by Primary Human Monocytes during Antibody-enhanced Dengue Virus Infection. Journal of Biological Chemistry, 2015, 290, 17306-17320.	1.6	44
89	A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nature Communications, 2015, 6, 6341.	5.8	181
90	Preexisting Neutralizing Antibody Responses Distinguish Clinically Inapparent and Apparent Dengue Virus Infections in a Sri Lankan Pediatric Cohort. Journal of Infectious Diseases, 2015, 211, 590-599.	1.9	57

#	Article	IF	CITATIONS
91	Dengue Viruses Are Enhanced by Distinct Populations of Serotype Cross-Reactive Antibodies in Human Immune Sera. PLoS Pathogens, 2014, 10, e1004386.	2.1	144
92	Measuring Antibody Neutralization of Dengue Virus (DENV) Using a Flow Cytometry-Based Technique. Methods in Molecular Biology, 2014, 1138, 27-39.	0.4	28
93	A potent antiâ€dengue human antibody preferentially recognizes the conformation of ⟨scp⟩E⟨/scp⟩ protein monomers assembled on the virus surface. EMBO Molecular Medicine, 2014, 6, 358-371.	3.3	154
94	Low Copy Numbers of <scp>DCâ€SIGN</scp> in Cell Membrane Microdomains: Implications forÂStructure and Function. Traffic, 2014, 15, 179-196.	1.3	17
95	Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1939-1944.	3.3	55
96	Burden of Dengue Infection and Disease in a Pediatric Cohort in Urban Sri Lanka. American Journal of Tropical Medicine and Hygiene, 2014, 91, 132-137.	0.6	35
97	Isolation of Dengue Virus-Specific Memory B Cells with Live Virus Antigen from Human Subjects following Natural Infection Reveals the Presence of Diverse Novel Functional Groups of Antibody Clones. Journal of Virology, 2014, 88, 12233-12241.	1.5	92
98	Dengue Virus Infection Mediated by DC-SIGN. Biophysical Journal, 2014, 106, 238a.	0.2	0
99	Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2046-53.	3.3	524
100	An Alphavirus Vector-Based Tetravalent Dengue Vaccine Induces a Rapid and Protective Immune Response in Macaques That Differs Qualitatively from Immunity Induced by Live Virus Infection. Journal of Virology, 2013, 87, 3409-3424.	1.5	67
101	The mechanism of differential neutralization of dengue serotype 3 strains by monoclonal antibody 8A1. Virology, 2013, 439, 57-64.	1.1	19
102	Human Monoclonal Antibodies Derived From Memory B Cells Following Live Attenuated Dengue Virus Vaccination or Natural Infection Exhibit Similar Characteristics. Journal of Infectious Diseases, 2013, 207, 1898-1908.	1.9	74
103	The Potent and Broadly Neutralizing Human Dengue Virus-Specific Monoclonal Antibody 1C19 Reveals a Unique Cross-Reactive Epitope on the bc Loop of Domain II of the Envelope Protein. MBio, 2013, 4, e00873-13.	1.8	143
104	Estimates of Dengue Force of Infection in Children in Colombo, Sri Lanka. PLoS Neglected Tropical Diseases, 2013, 7, e2259.	1.3	49
105	Pichia pastoris-Expressed Dengue 2 Envelope Forms Virus-Like Particles without Pre-Membrane Protein and Induces High Titer Neutralizing Antibodies. PLoS ONE, 2013, 8, e64595.	1.1	55
106	Development and Characterization of a Reverse Genetic System for Studying Dengue Virus Serotype 3 Strain Variation and Neutralization. PLoS Neglected Tropical Diseases, 2012, 6, e1486.	1.3	81
107	Persistence of Circulating Memory B Cell Clones with Potential for Dengue Virus Disease Enhancement for Decades following Infection. Journal of Virology, 2012, 86, 2665-2675.	1.5	136
108	Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7439-7444.	3.3	350

#	Article	IF	Citations
109	Recombinant Dengue Type 2 Viruses with Altered E Protein Domain III Epitopes Are Efficiently Neutralized by Human Immune Sera. Journal of Virology, 2012, 86, 4019-4023.	1.5	44
110	Unsuspected Dengue Causes Acute Febrile Illness in Rural and Semi-Urban Southern Sri Lanka. Emerging Infectious Diseases, 2012, 18, 256-263.	2.0	23
111	Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo. Virology, 2012, 429, 12-20.	1.1	75
112	New Dengue Virus Type 1 Genotype in Colombo, Sri Lanka. Emerging Infectious Diseases, 2011, 17, 2053-5.	2.0	55
113	Human antibodies against dengue enhance dengue viral infectivity without suppressing type I interferon secretion in primary human monocytes. Virology, 2011, 410, 240-247.	1.1	54
114	The Human Antibody Response to Dengue Virus Infection. Viruses, 2011, 3, 2374-2395.	1.5	296
115	In-Depth Analysis of the Antibody Response of Individuals Exposed to Primary Dengue Virus Infection. PLoS Neglected Tropical Diseases, 2011, 5, e1188.	1.3	184
116	Natural Strain Variation and Antibody Neutralization of Dengue Serotype 3 Viruses. PLoS Pathogens, 2010, 6, e1000821.	2.1	120
117	The Human Immune Response to Dengue Virus Is Dominated by Highly Cross-Reactive Antibodies Endowed with Neutralizing and Enhancing Activity. Cell Host and Microbe, 2010, 8, 271-283.	5.1	526
118	Molecular characterization of the tick-Borrelia interface. Frontiers in Bioscience - Landmark, 2009, Volume, 3051.	3.0	30
119	Characterization ofBorrelia burgdorferiAggregates. Vector-Borne and Zoonotic Diseases, 2009, 9, 323-329.	0.6	12
120	Severe Dengue Epidemics in Sri Lanka, 2003–2006. Emerging Infectious Diseases, 2009, 15, 192-199.	2.0	122
121	Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody. Virology, 2009, 392, 103-113.	1.1	235
122	N-Linked glycans on dengue viruses grown in mammalian and insect cells. Journal of General Virology, 2009, 90, 2097-2106.	1.3	72
123	Genetic analysis of Dengue 3 virus subtype III $5\hat{a}\in^2$ and $3\hat{a}\in^2$ non-coding regions. Virus Research, 2008, 135, 320-325.	1.1	22
124	A Novel Mechanism of Complement Inhibition Unmasked by a Tick Salivary Protein That Binds to Properdin. Journal of Immunology, 2008, 180, 3964-3968.	0.4	68
125	Reciprocal Expression of <i>ospA</i> and <i>ospC</i> in Single Cells of <i>Borrelia burgdorferi</i> Journal of Bacteriology, 2008, 190, 3429-3433.	1.0	49
126	Lack of Detectable Variation atBorrelia burgdorferi vlsELocus in Ticks. Journal of Medical Entomology, 2007, 44, 168-170.	0.9	11

#	Article	IF	Citations
127	Lack of Detectable Variation at <i>Borrelia burgdorferi vlsE</i> Locus in Ticks. Journal of Medical Entomology, 2007, 44, 168-170.	0.9	10
128	Infection of Mice with Lyme Disease Spirochetes Constitutively Producing Outer Surface Proteins A and B. Infection and Immunity, 2007, 75, 2786-2794.	1.0	25
129	Comparison of Plaque- and Flow Cytometry-Based Methods for Measuring Dengue Virus Neutralization. Journal of Clinical Microbiology, 2007, 45, 3777-3780.	1.8	132
130	Role of Borrelia burgdorferi Linear Plasmid 25 in Infection of Ixodes scapularis Ticks. Journal of Bacteriology, 2005, 187, 5776-5781.	1.0	38
131	Plasmid Requirements for Infection of Ticks byBorrelia burgdorferi. Vector-Borne and Zoonotic Diseases, 2005, 5, 237-245.	0.6	46
132	Protective and Therapeutic Capacity of Human Single-Chain Fv-Fc Fusion Proteins against West Nile Virus. Journal of Virology, 2005, 79, 14606-14613.	1.5	112
133	Interactions of OspA Monoclonal Antibody C3.78 with Borrelia burgdorferi within Ticks. Infection and Immunity, 2005, 73, 1644-1647.	1.0	18
134	Arguments for live flavivirus vaccines. Lancet, The, 2004, 364, 500.	6.3	13
135	Evaluation of Venezuelan Equine Encephalitis (VEE) replicon-based Outer surface protein A (OspA) vaccines in a tick challenge mouse model of Lyme disease. Vaccine, 2003, 21, 3875-3884.	1.7	14
136	Genetic Variation at the vlsE Locus of Borrelia burgdorferi within Ticks and Mice over the Course of a Single Transmission Cycle. Journal of Bacteriology, 2003, 185, 4432-4441.	1.0	45
137	Does Host Complement Kill Borrelia burgdorferi within Ticks?. Infection and Immunity, 2003, 71, 822-829.	1.0	34
138	Emergence and Global Spread of a Dengue Serotype 3, Subtype III Virus. Emerging Infectious Diseases, 2003, 9, 800-809.	2.0	334
139	Glass Capillary Tube Feeding: A Method for Infecting Nymphal <i>Ixodes scapularis</i> with The Lyme Disease Spirochete <i>Borrelia burgdorferi</i> Journal of Medical Entomology, 2002, 39, 285-292.	0.9	40
140	Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever American Journal of Tropical Medicine and Hygiene, 2002, 66, 765-773.	0.6	115
141	Purification and Characterization of Borrelia burgdorferi from Feeding Nymphal Ticks (Ixodes) Tj ETQq $1\ 1\ 0.$	784314 _{1:} gBT/C	Overlock 10
142	Contrasts in Tick Innate Immune Responses to <i>Borrelia burgdorferi</i> Challenge: Immunotolerance in <i>Ixodes scapularis</i> Versus Immunocompetence in <i>Dermacentor variabilis</i> (Acari: Ixodidae). Journal of Medical Entomology, 2001, 38, 99-107.	0.9	104
143	Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A. Journal of Clinical Investigation, 2000, 106, 561-569.	3.9	215
144	Influence of Outer Surface Protein A Antibody on <i>Borrelia burgdorferi</i> within Feeding Ticks. Infection and Immunity, 1999, 67, 30-35.	1.0	88

#	Article	lF	CITATIONS
145	Acquisition and Transmission of the Agent of Human Granulocytic Ehrlichiosis by <i>lxodes scapularis</i> Ticks. Journal of Clinical Microbiology, 1998, 36, 3574-3578.	1.8	121
146	Growth and Migration of Borrelia burgdorferi in Ixodes Ticks during Blood Feeding. American Journal of Tropical Medicine and Hygiene, 1995, 53, 397-404.	0.6	254