
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8767372/publications.pdf Version: 2024-02-01

SHAO-EN ONC

#	Article	IF	CITATIONS
1	Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular and Cellular Proteomics, 2002, 1, 376-386.	3.8	4,931
2	A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology. Cell, 2008, 134, 112-123.	28.9	1,766
3	Mass spectrometry–based proteomics turns quantitative. Nature Chemical Biology, 2005, 1, 252-262.	8.0	1,426
4	Nucleolar proteome dynamics. Nature, 2005, 433, 77-83.	27.8	1,061
5	Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Molecular and Cellular Proteomics, 2004, 3, 608-614.	3.8	957
6	Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology, 2002, 20, 261-268.	9.3	877
7	A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nature Protocols, 2006, 1, 2650-2660.	12.0	816
8	AU Binding Proteins Recruit the Exosome to Degrade ARE-Containing mRNAs. Cell, 2001, 107, 451-464.	28.9	803
9	A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nature Biotechnology, 2003, 21, 315-318.	17.5	702
10	Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnology, 2004, 22, 1139-1145.	17.5	680
11	Properties of13C-Substituted Arginine in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Journal of Proteome Research, 2003, 2, 173-181.	3.7	439
12	ldentifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nature Methods, 2004, 1, 119-126.	19.0	427
13	Identifying the proteins to which small-molecule probes and drugs bind in cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4617-4622.	7.1	282
14	MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics. Journal of Proteome Research, 2010, 9, 393-403.	3.7	237
15	Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO Journal, 2007, 26, 2262-2273.	7.8	223
16	DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization. Molecular Cell, 2010, 40, 34-49.	9.7	210
17	A Mitotic Phosphorylation Feedback Network Connects Cdk1, Plk1, 53BP1, and Chk2 to Inactivate the G2/M DNA Damage Checkpoint. PLoS Biology, 2010, 8, e1000287.	5.6	201
18	The Promise of Proteomics for the Study of ADP-Ribosylation. Molecular Cell, 2015, 58, 911-924.	9.7	181

#	Article	IF	CITATIONS
19	ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1666-1671.	7.1	147
20	An evaluation of the use of two-dimensional gel electrophoresis in proteomics. New Biotechnology, 2001, 18, 195-205.	2.7	143
21	Phosphoproteomic Approach to Characterize Protein Mono- and Poly(ADP-ribosyl)ation Sites from Cells. Journal of Proteome Research, 2014, 13, 3510-3522.	3.7	108
22	Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach. Nature Immunology, 2013, 14, 179-185.	14.5	104
23	Comparing SILAC- and Stable Isotope Dimethyl-Labeling Approaches for Quantitative Proteomics. Journal of Proteome Research, 2014, 13, 4164-4174.	3.7	99
24	CUB-domain–containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proceedings of the United States of America, 2011, 108, 1379-1384.	7.1	84
25	The expanding field of SILAC. Analytical and Bioanalytical Chemistry, 2012, 404, 967-976.	3.7	78
26	FUS Regulates Activity of MicroRNA-Mediated Gene Silencing. Molecular Cell, 2018, 69, 787-801.e8.	9.7	76
27	Crystal Structure of the COMPASS H3K4 Methyltransferase Catalytic Module. Cell, 2018, 174, 1106-1116.e9.	28.9	75
28	<scp>APC</scp> / <scp>C^C</scp> ^{dh1} controls Ct <scp>IP</scp> stability during the cell cycle and in response to <scp>DNA</scp> damage. EMBO Journal, 2014, 33, 2860-2879.	7.8	65
29	<scp>ENPP</scp> 1 processes protein <scp>ADP</scp> â€ribosylation <i>in vitro</i> . FEBS Journal, 2016, 283, 3371-3388.	4.7	63
30	Nudix hydrolases degrade protein-conjugated ADP-ribose. Scientific Reports, 2016, 5, 18271.	3.3	55
31	Cloning of MASK, a Novel Member of the Mammalian Germinal Center Kinase III Subfamily, with Apoptosis-inducing Properties. Journal of Biological Chemistry, 2002, 277, 5929-5939.	3.4	53
32	ELTA: Enzymatic Labeling of Terminal ADP-Ribose. Molecular Cell, 2019, 73, 845-856.e5.	9.7	52
33	Empirical Bayes Analysis of Quantitative Proteomics Experiments. PLoS ONE, 2009, 4, e7454.	2.5	52
34	An acquired scaffolding function of the DNAJ-PKAc fusion contributes to oncogenic signaling in fibrolamellar carcinoma. ELife, 2019, 8, .	6.0	48
35	Identifying Poly(ADP-ribose)-Binding Proteins with Photoaffinity-Based Proteomics. Journal of the American Chemical Society, 2021, 143, 3037-3042.	13.7	44
36	Proteomic Investigation of Metabolic Shift in Mammalian Cell Culture. Biotechnology Progress, 2001, 17, 1137-1144.	2.6	41

#	Article	IF	CITATIONS
37	Single nucleotide polymorphisms alter kinase anchoring and the subcellular targeting of A-kinase anchoring proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11465-E11474.	7.1	41
38	SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5685-93.	7.1	37
39	An integrated approach in the discovery and characterization of a novel nuclear protein over-expressed in liver and pancreatic tumors. FEBS Letters, 2001, 496, 109-116.	2.8	36
40	Kinobead and Single-Shot LC-MS Profiling Identifies Selective PKD Inhibitors. Journal of Proteome Research, 2017, 16, 1216-1227.	3.7	36
41	AAK1 Identified as an Inhibitor of Neuregulin-1/ErbB4-Dependent Neurotrophic Factor Signaling Using Integrative Chemical Genomics and Proteomics. Chemistry and Biology, 2011, 18, 891-906.	6.0	34
42	Proteome analysis of a human heptocellular carcinoma cell line, HCC-M: An update. Electrophoresis, 2001, 22, 2804-2811.	2.4	33
43	Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics. Cellular Signalling, 2016, 28, 764-778.	3.6	30
44	Analyses of PDE-regulated phosphoproteomes reveal unique and specific cAMP-signaling modules in T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6240-E6249.	7.1	26
45	Pharmacoproteomics Identifies Kinase Pathways that Drive the Epithelial-Mesenchymal Transition and Drug Resistance in Hepatocellular Carcinoma. Cell Systems, 2020, 11, 196-207.e7.	6.2	24
46	Rapid profiling of protein kinase inhibitors by quantitative proteomics. MedChemComm, 2014, 5, 363-369.	3.4	20
47	Depletion of dAKAP1–protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. Journal of Biological Chemistry, 2019, 294, 3152-3168.	3.4	17
48	ADP-Ribosylated Peptide Enrichment and Site Identification: The Phosphodiesterase-Based Method. Methods in Molecular Biology, 2017, 1608, 79-93.	0.9	17
49	Huntingtin is associated with cytomatrix proteins at the presynaptic terminal. Molecular and Cellular Neurosciences, 2014, 63, 96-100.	2.2	16
50	GPR124 regulates microtubule assembly, mitotic progression, and glioblastoma cell proliferation. Glia, 2019, 67, 1558-1570.	4.9	15
51	A-kinase-anchoring protein 1 (dAKAP1)-based signaling complexes coordinate local protein synthesis at the mitochondrial surface. Journal of Biological Chemistry, 2020, 295, 10749-10765.	3.4	15
52	Kinome chemoproteomics characterization of pyrrolo[3,4- <i>c</i>]pyrazoles as potent and selective inhibitors of glycogen synthase kinase 3. Molecular Omics, 2018, 14, 26-36.	2.8	14
53	5-HT _{1B} Receptor-Mediated Activation of ERK1/2 Requires Both Gα _{i/o} and β-Arrestin Proteins. ACS Chemical Neuroscience, 2019, 10, 3143-3153.	3.5	10
54	N-glycosylation of α1D-adrenergic receptor N-terminal domain is required for correct trafficking, function, and biogenesis. Scientific Reports, 2020, 10, 7209.	3.3	8

#	Article	IF	CITATIONS
55	KiRNet: Kinase-centered network propagation of pharmacological screen results. Cell Reports Methods, 2021, 1, 100007.	2.9	8
56	Kinobead/LC-MS Phosphokinome Profiling Enables Rapid Analyses of Kinase-Dependent Cell Signaling Networks. Journal of Proteome Research, 2020, 19, 1235-1247.	3.7	7
57	Proteomic Profiling of Protein Kinase Inhibitor Targets by Mass Spectrometry. Methods in Molecular Biology, 2017, 1636, 105-117.	0.9	7
58	Parallel Chemoselective Profiling for Mapping Protein Structure. Cell Chemical Biology, 2020, 27, 1084-1096.e4.	5.2	6
59	Syk Is a New Target for AML Differentiation Blood, 2007, 110, 209-209.	1.4	6
60	Water Droplet-in-Oil Digestion Method for Single-Cell Proteomics. Analytical Chemistry, 2022, 94, 10329-10336.	6.5	6
61	Noncanonical translation via deadenylated 3′ UTRs maintains primordial germ cells. Nature Chemical Biology, 2018, 14, 844-852.	8.0	5
62	Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions. Molecular Pharmacology, 2021, 99, 342-357.	2.3	5
63	Ion-Pairing with Triethylammonium Acetate Improves Solid-Phase Extraction of ADP-Ribosylated Peptides. Journal of Proteome Research, 2020, 19, 984-990.	3.7	3
64	Using mass spectrometry for drug discovery. Trends in Biotechnology, 2002, 20, 227.	9.3	1
65	Autophagy as a Target Pathway in Multiple Myeloma: A Forward Chemical Genetic Approach Blood, 2007, 110, 2510-2510.	1.4	Ο
66	GPR124 coupling and function in astrocytomas. FASEB Journal, 2013, 27, 1096.4.	0.5	0
67	Ironâ€dependent regulation of mitochondrial form and function. FASEB Journal, 2013, 27, lb65.	0.5	Ο
68	Quantitative Determination of MAR Hydrolase Residue Specificity In Vitro by Tandem Mass Spectrometry. Methods in Molecular Biology, 2018, 1813, 271-283.	0.9	0
69	KiRNet: Integrated, Kinase-Centered Network Modeling Predicts Mechanisms Behind Phenotypic Associations. SSRN Electronic Journal, 0, , .	0.4	Ο