
Philippe Plattet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8766760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biparatopic sybodies neutralize SARS oVâ€2 variants of concern and mitigate drug resistance. EMBO Reports, 2022, 23, e54199.	4.5	30
2	Efficient recovery of attenuated canine distemper virus from cDNA. Virus Research, 2022, 316, 198796.	2.2	2
3	Selective SLAM/CD150 receptor-detargeting of canine distemper virus. Virus Research, 2022, 318, 198841.	2.2	3
4	Persistent Infection of a Canine Histiocytic Sarcoma Cell Line with Attenuated Canine Distemper Virus Expressing Vasostatin or Granulocyte-Macrophage Colony-Stimulating Factor. International Journal of Molecular Sciences, 2022, 23, 6156.	4.1	2
5	Antiviral Screen against Canine Distemper Virus-Induced Membrane Fusion Activity. Viruses, 2021, 13, 128.	3.3	7
6	Oligomerization and Cell Egress Controlled by Two Microdomains of Canine Distemper Virus Matrix Protein. MSphere, 2021, 6, .	2.9	2
7	Highly Potent Host-Specific Small-Molecule Inhibitor of Paramyxovirus and Pneumovirus Replication with High Resistance Barrier. MBio, 2021, 12, e0262121.	4.1	5
8	Clustered Lysine Residues of the Canine Distemper Virus Matrix Protein Regulate Membrane Association and Budding Activity. Journal of Virology, 2020, 95, .	3.4	7
9	Structures and dynamics of the novel S1/S2 protease cleavage site loop of the SARS-CoV-2 spike glycoprotein. Journal of Structural Biology: X, 2020, 4, 100038.	1.3	34
10	Cryo-EM structure of the prefusion state of canine distemper virus fusion protein ectodomain. Journal of Structural Biology: X, 2020, 4, 100021.	1.3	4
11	Primary resistance mechanism of the canine distemper virus fusion protein against a small-molecule membrane fusion inhibitor. Virus Research, 2019, 259, 28-37.	2.2	10
12	Regulatory Role of the Morbillivirus Attachment Protein Head-to-Stalk Linker Module in Membrane Fusion Triggering. Journal of Virology, 2018, 92, .	3.4	13
13	Dimerization Efficiency of Canine Distemper Virus Matrix Protein Regulates Membrane-Budding Activity. Journal of Virology, 2017, 91, .	3.4	12
14	Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses, 2016, 8, 112.	3.3	72
15	Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM. Journal of Virology, 2016, 90, 1622-1637.	3.4	21
16	Sequential Conformational Changes in the Morbillivirus Attachment Protein Initiate the Membrane Fusion Process. PLoS Pathogens, 2015, 11, e1004880.	4.7	35
17	SLAM- and Nectin-4-Independent Noncytolytic Spread of Canine Distemper Virus in Astrocytes. Journal of Virology, 2015, 89, 5724-5733.	3.4	33
18	Canine Distemper Virus Envelope Protein Interactions Modulated by Hydrophobic Residues in the Fusion Protein Globular Head. Journal of Virology, 2015, 89, 1445-1451.	3.4	12

PHILIPPE PLATTET

#	Article	IF	CITATIONS
19	Molecular Determinants Defining the Triggering Range of Prefusion F Complexes of Canine Distemper Virus. Journal of Virology, 2014, 88, 2951-2966.	3.4	36
20	Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3795-E3804.	7.1	16
21	Heterologous Expression of Equine CYP3A94 and Investigation of a Tunable System to Regulate Co-Expressed NADPH P450 Oxidoreductase Levels. PLoS ONE, 2014, 9, e113540.	2.5	1
22	Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein. Journal of Virology, 2013, 87, 314-326.	3.4	54
23	Envelope Protein Dynamics in Paramyxovirus Entry. MBio, 2013, 4, .	4.1	62
24	Experimental Adaptation of Wild-Type Canine Distemper Virus (CDV) to the Human Entry Receptor CD150. PLoS ONE, 2013, 8, e57488.	2.5	66
25	Structural Rearrangements of the Central Region of the Morbillivirus Attachment Protein Stalk Domain Trigger F Protein Refolding for Membrane Fusion. Journal of Biological Chemistry, 2012, 287, 16324-16334.	3.4	63
26	Triggering the measles virus membrane fusion machinery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3018-27.	7.1	63
27	Morbillivirus Glycoprotein Expression Induces ER Stress, Alters Ca2+ Homeostasis and Results in the Release of Vasostatin. PLoS ONE, 2012, 7, e32803.	2.5	14
28	Canine Distemper Virus Infects Canine Keratinocytes and Immune Cells by Using Overlapping and Distinct Regions Located on One Side of the Attachment Protein. Journal of Virology, 2011, 85, 11242-11254.	3.4	31
29	Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein. Acta Neuropathologica, 2010, 119, 617-630.	7.7	45
30	Identification of Key Residues in Virulent Canine Distemper Virus Hemagglutinin That Control CD150/SLAM-Binding Activity. Journal of Virology, 2010, 84, 9618-9624.	3.4	32
31	Two Domains of the V Protein of Virulent Canine Distemper Virus Selectively Inhibit STAT1 and STAT2 Nuclear Import. Journal of Virology, 2010, 84, 6328-6343.	3.4	53
32	Conserved Leucine Residue in the Head Region of Morbillivirus Fusion Protein Regulates the Large Conformational Change during Fusion Activity. Biochemistry, 2009, 48, 9112-9121.	2.5	24
33	Signal Peptide and Helical Bundle Domains of Virulent Canine Distemper Virus Fusion Protein Restrict Fusogenicity. Journal of Virology, 2007, 81, 11413-11425.	3.4	33
34	Synergistic inhibition in cell–cell fusion mediated by the matrix and nucleocapsid protein of canine distemper virus. Virus Research, 2007, 129, 145-154.	2.2	18
35	Adaptation of canine distemper virus to canine footpad keratinocytes modifies polymerase activity and fusogenicity through amino acid substitutions in the P/V/C and H proteins. Virology, 2007, 359, 6-18.	2.4	15
36	The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection. Virology, 2005, 337, 312-326.	2.4	27

#	Article	IF	CITATIONS
37	Recovery of a persistent Canine distemper virus expressing the enhanced green fluorescent protein from cloned cDNA. Virus Research, 2004, 101, 147-153.	2.2	29