Patrizia Lavia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8765501/publications.pdf

Version: 2024-02-01

		109321	155660
80	3,345	35	55
papers	citations	h-index	g-index
0.1	01	01	4210
81	81	81	4219
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Molecular Cell, 2022, 82, 75-89.e9.	9.7	39
2	Importin- \hat{l}^2 /karyopherin- \hat{l}^2 1 modulates mitotic microtubule function and taxane sensitivity in cancer cells via its nucleoporin-binding region. Oncogene, 2020, 39, 454-468.	5.9	8
3	The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases. Cells, 2020, 9, 49.	4.1	19
4	Reverse transcriptase inhibitors promote the remodelling of nuclear architecture and induce autophagy in prostate cancer cells. Cancer Letters, 2020, 478, 133-145.	7.2	14
5	New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors. European Journal of Medicinal Chemistry, 2018, 152, 283-297.	5.5	30
6	Visualization of human karyopherin beta-1/importin beta-1 interactions with protein partners in mitotic cells by co-immunoprecipitation and proximity ligation assays. Scientific Reports, 2018, 8, 1850.	3.3	15
7	p38 MAPK differentially controls NK activating ligands at transcriptional and post-transcriptional level on multiple myeloma cells. Oncolmmunology, 2017, 6, e1264564.	4.6	29
8	PARP inhibitors enhance replication stress and cause mitotic catastrophe in MYCN-dependent neuroblastoma. Oncogene, 2017, 36, 4682-4691.	5.9	73
9	Subcellular localization of the five members of the human steroid $5l\pm$ -reductase family. Biochimie Open, 2017, 4, 99-106.	3.2	11
10	Importin beta and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function. Journal of Cell Science, 2017, 130, 2564-2578.	2.0	9
11	RANBP2 (RAN binding protein 2). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2017, , .	0.1	O
12	Mitotic cell death induction by targeting the mitotic spindle with tubulin-inhibitory indole derivative molecules. Oncotarget, 2017, 8, 19738-19759.	1.8	19
13	Identification of small molecule inhibitors of the Aurora-A/TPX2 complex. Oncotarget, 2017, 8, 32117-32133.	1.8	23
14	The small molecule SI113 synergizes with mitotic spindle poisons in arresting the growth of human glioblastoma multiforme. Oncotarget, 2017, 8, 110743-110755.	1.8	20
15	Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential. IUBMB Life, 2016, 68, 268-280.	3.4	47
16	The GTPase RAN regulates multiple steps of the centrosome life cycle. Chromosome Research, 2016, 24, 53-65.	2.2	16
17	New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer. Journal of Medicinal Chemistry, 2015, 58, 5789-5807.	6.4	51
18	Preclinical model in HCC: the SGK1 kinase inhibitor SI113 blocks tumor progression (i) in vitro (i) and (i) in vivo (i) and synergizes with radiotherapy. Oncotarget, 2015, 6, 37511-37525.	1.8	55

#	Article	IF	CITATIONS
19	New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer. Journal of Medicinal Chemistry, 2014, 57, 6531-6552.	6.4	80
20	The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy. Oncotarget, 2014, 5, 6229-6242.	1.8	37
21	Immunofluorescence Methods in Studies of the GTPase Ran and Its Effectors in Interphase and in Mitotic Cells. Methods in Molecular Biology, 2014, 1120, 241-252.	0.9	0
22	Toward Highly Potent Cancer Agents by Modulating the C-2 Group of the Arylthioindole Class of Tubulin Polymerization Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 123-149.	6.4	107
23	Boycott challenges research tactics. Nature, 2013, 501, 316-316.	27.8	4
24	Sgk1 enhances RANBP1 transcript levels and decreases taxol sensitivity in RKO colon carcinoma cells. Oncogene, 2013, 32, 4572-4578.	5.9	52
25	KPNB1 (karyopherin (importin) beta 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2013, , .	0.1	0
26	Importin- \hat{l}^2 negatively regulates multiple aspects of mitosis including RANGAP1 recruitment to kinetochores. Journal of Cell Biology, 2012, 196, 435-450.	5.2	51
27	Segmental chromosome aberrations converge on overexpression of mitotic spindle regulatory genes in highâ€risk neuroblastoma. Genes Chromosomes and Cancer, 2012, 51, 545-556.	2.8	16
28	XPO1 (exportin 1 (CRM1 homolog, yeast)). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2012, , .	0.1	0
29	Modulation of Cell Differentiation, Proliferation, and Tumor Growth by Dihydrobenzyloxopyrimidine Non-Nucleoside Reverse Transcriptase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 5927-5936.	6.4	13
30	Design and Synthesis of 2-Heterocyclyl-3-arylthio- $1 < i > H < / i > -i$ indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability. Journal of Medicinal Chemistry, 2011, 54, 8394-8406.	6.4	70
31	Aurora-A inactivation causes mitotic spindle pole fragmentation by unbalancing microtubule-generated forces. Molecular Cancer, 2011, 10, 131.	19.2	48
32	Control of Aurora-A stability through interaction with TPX2. Journal of Cell Science, 2011, 124, 113-122.	2.0	67
33	RAN (RAN, member RAS oncogene family). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2011, , .	0.1	1
34	Ran control of mitosis in human cells: gradients and local signals. Biochemical Society Transactions, 2010, 38, 1709-1714.	3.4	15
35	Nuclear reformation after mitosis requires downregulation of the Ran GTPase effector RanBP1 in mammalian cells. Chromosoma, 2010, 119, 651-668.	2.2	22
36	The Aurora-A/TPX2 complex: A novel oncogenic holoenzyme?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 230-239.	7.4	68

#	Article	IF	CITATIONS
37	RanBP1 downregulation sensitizes cancer cells to taxol in a caspase-3-dependent manner. Oncogene, 2009, 28, 1748-1758.	5.9	34
38	Aurora-A and ch-TOG act in a common pathway in control of spindle pole integrity. Oncogene, 2008, 27, 6539-6549.	5.9	49
39	Localized RanGTP Accumulation Promotes Microtubule Nucleation at Kinetochores in Somatic Mammalian Cells. Molecular Biology of the Cell, 2008, 19, 1873-1882.	2.1	77
40	The GTPase Ran: regulation of cell life and potential roles in cell transformation. Frontiers in Bioscience - Landmark, 2008, Volume, 4097.	3.0	44
41	RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. Journal of Cell Science, 2007, 120, 3748-3761.	2.0	57
42	Spatial control of mitosis by the GTPase Ran. Cellular and Molecular Life Sciences, 2007, 64, 1891-1914.	5.4	92
43	A role for endogenous reverse transcriptase in tumorigenesis and as a target in differentiating cancer therapy. Genes Chromosomes and Cancer, 2006, 45, 1-10.	2.8	48
44	A Functional Interplay Between Aurora-A, Plk1 and TPX2 at Spindle Poles: Plk1 Controls Centrosomal Localization of Aurora-A and TPX2 Spindle Association. Cell Cycle, 2006, 5, 296-303.	2.6	122
45	New CRIME plots. EMBO Reports, 2005, 6, 714-716.	4.5	8
46	A Role of p73 in Mitotic Exit. Journal of Biological Chemistry, 2005, 280, 30354-30360.	3.4	35
47	Importin \hat{I}^2 is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cells. Journal of Cell Science, 2004, 117, 6511-6522.	2.0	80
48	p53 Localization at Centrosomes during Mitosis and Postmitotic Checkpoint Are ATM-dependent and Require Serine 15 Phosphorylation. Molecular Biology of the Cell, 2004, 15, 3751-3757.	2.1	92
49	Mitotic Functions of the Ran GTPase Network: the Importance of Being in the Right Place at the Right Time. Cell Cycle, 2004, 3, 303-311.	2.6	62
50	Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation. Oncogene, 2003, 22, 2750-2761.	5.9	105
51	Emerging roles of DNA tumor viruses in cell proliferation: new insights into genomic instability. Oncogene, 2003, 22, 6508-6516.	5.9	71
52	p73 Is Regulated by Phosphorylation at the G2/M Transition. Journal of Biological Chemistry, 2003, 278, 49196-49202.	3.4	37
53	Part of Ran Is Associated with AKAP450 at the Centrosome: Involvement in Microtubule-organizing Activity. Molecular Biology of the Cell, 2003, 14, 4260-4271.	2.1	132
54	Mammalian RanBP1 regulates centrosome cohesion during mitosis. Journal of Cell Science, 2003, 116, 3399-3411.	2.0	84

#	Article	IF	CITATIONS
55	E1A deregulates the centrosome cycle in a Ran GTPase-dependent manner. Cancer Research, 2003, 63, 1430-7.	0.9	39
56	Normal and cancer-prone human cells respond differently to extremely low frequency magnetic fields. FEBS Letters, 2001, 487, 397-403.	2.8	22
57	p53 Displacement from Centrosomes and p53-mediated G1 Arrest following Transient Inhibition of the Mitotic Spindle. Journal of Biological Chemistry, 2001, 276, 19205-19213.	3.4	107
58	Mitotic Control by Ran and RanBP1 in Mammalian Cells. , 2001, , 145-162.		0
59	Cloning of PC3B, a Novel Member of the PC3/BTG/TOB Family of Growth Inhibitory Genes, Highly Expressed in the Olfactory Epithelium. Genomics, 2000, 68, 253-263.	2.9	66
60	The human Per1 gene: genomic organization and promoter analysis of the first human orthologue of the Drosophila period gene. Gene, 2000, 253, 161-170.	2.2	23
61	E2F transcription factors are differentially expressed in murine gametes and early embryos. Mechanisms of Development, 2000, 97, 211-215.	1.7	16
62	Cytosine methylation transforms an E2F site in the retinoblastoma gene promoter into a binding site for the general repressor methylcytosine- binding protein 2 (MeCP2). Nucleic Acids Research, 1999, 27, 2852-2859.	14.5	32
63	Two E2F Sites Control Growth-regulated and Cell Cycle-regulated Transcription of the Htf9-a/RanBP1 Gene through Functionally Distinct Mechanisms. Journal of Biological Chemistry, 1999, 274, 10339-10348.	3.4	27
64	E2F target genes and cell-cycle checkpoint control. BioEssays, 1999, 21, 221-230.	2.5	149
65	p53-Independent Apoptosis and p53-Dependent Block of DNA Rereplication Following Mitotic Spindle Inhibition in Human Cells. Experimental Cell Research, 1999, 250, 339-350.	2.6	94
66	Interactions with Single-stranded and Double-stranded DNA-binding Factors and Alternative Promoter Conformation upon Transcriptional Activation of the Htf9-a/RanBP1 and Htf9-c Genes. Journal of Biological Chemistry, 1998, 273, 495-505.	3.4	15
67	Expression of the murine <i>RanBP1</i> and <i>Htf9-c</i> genes is regulated from a shared bidirectional promoter during cell cycle progression. Biochemical Journal, 1997, 325, 277-286.	3.7	50
68	Different Effects of Histone H1 onde NovoDNA Methylationin VitroDepend on both the DNA Base Composition and the DNA Methyltransferaseâ€. Biochemistry, 1996, 35, 11660-11667.	2.5	7
69	Cell type-specific interactions of transcription factors with a housekeeping promoterin vivo. Nucleic Acids Research, 1993, 21, 2465-2471.	14.5	24
70	Characterization of the opposite-strand genes from the mouse bidirectionally transcribed HTF9 locus. Gene, 1991, 103, 201-209.	2.2	44
71	Transcription factors binding to the mouse HTF9 housekeeping promoter differ between cell types. Nucleic Acids Research, 1991, 19, 4451-4458.	14.5	18
72	The housekeeping promoter from the mouse CpG island HTF9 contains multiple protein-binding elements that are functionally redundant. Nucleic Acids Research, 1991, 19, 2817-2824.	14.5	34

#	Article	IF	CITATION
73	In vitromethylation of CpG-rich islands. Nucleic Acids Research, 1989, 17, 9219-9229.	14.5	30
74	Coincident start sites for divergent transcripts at a randomly selected CpG-rich island of mouse EMBO Journal, 1987, 6, 2773-2779.	7.8	87
75	Differential gene activity visualized on sister chromatids after replication in the presence of 5-azacytidine. Chromosoma, 1985, 91, 307-312.	2.2	6
76	Effect of 5-azacytidine (5-azaC) on the induction of chromatid aberrations (CA) and sister-chromatid exchanges (SCE). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1985, 149, 463-467.	1.0	20
77	Activation of human ribosomal genes by 5-azacytidine. Experimental Cell Research, 1983, 145, 452-457.	2.6	24
78	Silver staining of the nucleolus organizer regions (NOR) requires clusters of sulfhydryl groups Journal of Histochemistry and Cytochemistry, 1982, 30, 908-911.	2.5	30
79	Effects of Potassium Cyanide on Silver Stainability of Specific Cell Structures. Biotechnic & Histochemistry, 1982, 57, 259-263.	0.4	0
80	Clonal inheritance of rRNA gene activity: Cytological evidence in human cells. Chromosoma, 1981, 84, 345-351.	2.2	19