
Jonathan W Leff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8764843/publications.pdf

Version: 2024-02-01

Ιονατήαν \λ/ Ι έξε

#	Article	IF	CITATIONS
1	Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nature Communications, 2021, 12, 3484.	12.8	116
2	High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans. Genome Medicine, 2020, 12, 59.	8.2	18
3	Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME Journal, 2018, 12, 1794-1805.	9.8	210
4	Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 2018, 4, eaau4578.	10.3	161
5	Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology, 2018, 99, 2455-2466.	3.2	197
6	Following Rapoport's Rule: the geographic range and genome size of bacterial taxa decline at warmer latitudes. Environmental Microbiology, 2017, 19, 3152-3162.	3.8	25
7	Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure. Soil Biology and Biochemistry, 2017, 112, 258-268.	8.8	60
8	Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology, 2017, 2, 16242.	13.3	660
9	Response of soil microbial community composition and function to a bottomland forest restoration intensity gradient. Applied Soil Ecology, 2017, 119, 317-326.	4.3	62
10	The emerging contribution of social wasps to grape rot disease ecology. PeerJ, 2017, 5, e3223.	2.0	19
11	Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment. Frontiers in Microbiology, 2016, 7, 1753.	3.5	81
12	Longâ€lasting effects of land use history on soil fungal communities in secondâ€growth tropical rain forests. Ecological Applications, 2016, 26, 1881-1895.	3.8	64
13	A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biology and Biochemistry, 2016, 96, 145-151.	8.8	170
14	Biogeochemical drivers of microbial community convergence across actively retreating glaciers. Soil Biology and Biochemistry, 2016, 101, 74-84.	8.8	42
15	Infection with a Shoot-Specific Fungal Endophyte (Epichloë) Alters Tall Fescue Soil Microbial Communities. Microbial Ecology, 2016, 72, 197-206.	2.8	67
16	Composition Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. Journal of Diabetes and Obesity, 2015, 2, 108-114.	0.2	159
17	Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5756-5761.	7.1	372
18	Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10967-10972.	7.1	1,023

JONATHAN W LEFF

#	Article	IF	CITATIONS
19	The ecology of microscopic life in household dust. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151139.	2.6	205
20	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	6.4	612
21	Spatial structuring of bacterial communities within individual <scp><i>G</i></scp> <i>inkgo biloba</i> trees. Environmental Microbiology, 2015, 17, 2352-2361.	3.8	94
22	Fungi Identify the Geographic Origin of Dust Samples. PLoS ONE, 2015, 10, e0122605.	2.5	53
23	Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ, 2015, 3, e804.	2.0	65
24	Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes. Soil Biology and Biochemistry, 2014, 68, 279-282.	8.8	143
25	Predicting the responsiveness of soil biodiversity to deforestation: a crossâ€biome study. Global Change Biology, 2014, 20, 2983-2994.	9.5	101
26	Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecology Letters, 2014, 17, 794-802.	6.4	243
27	Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141988.	2.6	295
28	Diversity, distribution and sources of bacteria in residential kitchens. Environmental Microbiology, 2013, 15, 588-596.	3.8	170
29	Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States. Science, 2013, 342, 621-624.	12.6	480
30	Bacterial Communities Associated with the Surfaces of Fresh Fruits and Vegetables. PLoS ONE, 2013, 8, e59310.	2.5	366
31	Home Life: Factors Structuring the Bacterial Diversity Found within and between Homes. PLoS ONE, 2013, 8, e64133.	2.5	277
32	Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times. PLoS ONE, 2013, 8, e79512.	2.5	258
33	Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks. PLoS ONE, 2013, 8, e58020.	2.5	174
34	Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21390-21395.	7.1	1,260
35	The Effects of Soil Bacterial Community Structure on Decomposition in a Tropical Rain Forest. Ecosystems, 2012, 15, 284-298.	3.4	59
36	Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biology, 2012, 18, 2969-2979.	9.5	152

#	Article	IF	CITATIONS
37	Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biology and Biochemistry, 2008, 40, 1629-1636.	8.8	199