
Isabelle Chuine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8764676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 2007, 22, 357-365.	8.7	1,746
2	Why does phenology drive species distribution?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3149-3160.	4.0	549
3	Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 2012, 39, 2119-2131.	3.0	526
4	A Unified Model for Budburst of Trees. Journal of Theoretical Biology, 2000, 207, 337-347.	1.7	437
5	Phenology is a major determinant of tree species range. Ecology Letters, 2001, 4, 500-510.	6.4	433
6	Grape ripening as a past climate indicator. Nature, 2004, 432, 289-290.	27.8	369
7	Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 2011, 151, 969-980.	4.8	286
8	Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 2009, 15, 961-975.	9.5	277
9	PROCESS-BASED MODELING OF SPECIES' DISTRIBUTIONS: WHAT LIMITS TEMPERATE TREE SPECIES' RANGE BOUNDARIES?. Ecology, 2007, 88, 2280-2291.	3.2	231
10	Tree species range shifts at a continental scale: new predictive insights from a processâ€based model. Journal of Ecology, 2008, 96, 784-794.	4.0	222
11	Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 2010, 186, 900-910.	7.3	208
12	Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology Letters, 2012, 15, 533-544.	6.4	197
13	Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 2016, 73, 5-25.	2.0	187
14	How long and how stable was the last interglacial?. Quaternary Science Reviews, 1997, 16, 605-612.	3.0	184
15	Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Global Change Biology, 2016, 22, 3444-3460.	9.5	178
16	Warming, Photoperiods, and Tree Phenology. Science, 2010, 329, 277-278.	12.6	165
17	Process-Based Models of Phenology for Plants and Animals. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 159-182.	8.3	163
18	Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nature Climate Change, 2015, 5, 766-771.	18.8	147

ISABELLE CHUINE

#	Article	IF	CITATIONS
19	Phenological plasticity will not help all species adapt to climate change. Global Change Biology, 2015, 21, 3062-3073.	9.5	145
20	Climatic determinants of budburst seasonality in four temperateâ€zone tree species. New Phytologist, 1999, 143, 339-349.	7.3	131
21	Niche breadth, competitive strength and range size of tree species: a trade-off based framework to understand species distribution. Ecology Letters, 2006, 9, 185-195.	6.4	130
22	Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L Agricultural and Forest Meteorology, 2013, 180, 249-264.	4.8	116
23	Temperature dependence of the reproduction niche and its relevance for plant species distributions. Journal of Biogeography, 2012, 39, 2191-2200.	3.0	97
24	How do genetic correlations affect species range shifts in a changing environment?. Ecology Letters, 2012, 15, 251-259.	6.4	96
25	Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology, 2018, 252, 220-230.	4.8	87
26	A physiological analogy of the niche for projecting the potential distribution of plants. Journal of Biogeography, 2012, 39, 2132-2145.	3.0	68
27	Plant Development Models. Tasks for Vegetation Science, 2003, , 217-235.	0.6	66
28	Plant Development Models. , 2013, , 275-293.		66
29	How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech. Global Change Biology, 2015, 21, 897-910.	9.5	65
30	Climate or migration: what limited <scp>E</scp> uropean beech postâ€glacial colonization?. Global Ecology and Biogeography, 2013, 22, 1217-1227.	5.8	56
31	Where are the wild things? Why we need better data on species distribution. Global Ecology and Biogeography, 2014, 23, 457-467.	5.8	48
32	Height growth determinants and adaptation to temperature in pines: a case study of Pinus contorta and Pinus monticola. Canadian Journal of Forest Research, 2006, 36, 1059-1066.	1.7	40
33	Understanding dormancy release in apricot flower buds (Prunus armeniaca L.) using several process-based phenological models. Agricultural and Forest Meteorology, 2014, 184, 210-219.	4.8	39
34	Will tree species experience increased frost damage due to climate change because of changes in leaf phenology?. Canadian Journal of Forest Research, 2014, 44, 1555-1565.	1.7	36
35	Where is the optimum? Predicting the variation of selection along climatic gradients and the adaptive value of plasticity. A case study on tree phenology. Evolution Letters, 2020, 4, 109-123.	3.3	36
36	Improving prophylaxis for pollen allergies: Predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana, 2004, 43, 65-80.	0.8	34

ISABELLE CHUINE

#	Article	IF	CITATIONS
37	Estimating consensus and associated uncertainty between inherently different species distribution models. Methods in Ecology and Evolution, 2013, 4, 442-452.	5.2	34
38	Sensitivity analysis of the tree distribution model Phenofit to climatic input characteristics: implications for climate impact assessment. Global Change Biology, 2005, 11, 1493-1503.	9.5	32
39	Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. New Phytologist, 2021, 230, 1700-1715.	7.3	31
40	Temperature thresholds of shoot elongation in provenances of <i>Pinus contorta</i> . Canadian Journal of Forest Research, 2001, 31, 1444-1455.	1.7	30
41	Climate change might increase the invasion potential of the alien C4 grass <i>Setaria parviflora</i> (Poaceae) in the Mediterranean Basin. Diversity and Distributions, 2012, 18, 661-672.	4.1	30
42	How Can Model Comparison Help Improving Species Distribution Models?. PLoS ONE, 2013, 8, e68823.	2.5	26
43	Flower phenology as a disruptor of the fruiting dynamics in temperate oak species. New Phytologist, 2020, 225, 1181-1192.	7.3	26
44	Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding. Nature Climate Change, 2022, 12, 193-199.	18.8	25
45	Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecological Modelling, 2019, 411, 108805.	2.5	23
46	Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Global Change Biology, 2015, 21, 82-96.	9.5	21
47	Contrasting direct and indirect effects of warming and drought on isoprenoid emissions from Mediterranean oaks. Regional Environmental Change, 2017, 17, 2121-2133.	2.9	14
48	A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998–2013 warming slowdown. Global Change Biology, 2017, 23, 5481-5491.	9.5	13
49	Limited validation of forecasted northward range shift in ten European tree species from a common garden experiment. Forest Ecology and Management, 2018, 410, 144-156.	3.2	13
50	Process-based models outcompete correlative models in projecting spring phenology of trees in a future warmer climate. Agricultural and Forest Meteorology, 2020, 285-286, 107931.	4.8	13
51	Highlighting the importance of water availability in reproductive processes to understand climate change impacts on plant biodiversity. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 37, 20-25.	2.7	12
52	Holm oak fecundity does not acclimate to a drier world. New Phytologist, 2021, 231, 631-645.	7.3	12
53	Modeling temperature-dependent survival with small datasets: insights from tropical mountain agricultural pests. Bulletin of Entomological Research, 2013, 103, 336-343.	1.0	11
54	Process, correlation and parameter fitting in species distribution models: a response to Kriticos <i>etÂal</i> . Journal of Biogeography, 2013, 40, 612-613.	3.0	8

ISABELLE CHUINE

#	Article	IF	CITATIONS
55	Resource manipulation through experimental defoliation has legacy effects on allocation to reproductive and vegetative organs in <i>Quercus ilex</i> . Annals of Botany, 2020, 126, 1165-1179.	2.9	8
56	Higher sample sizes and observer inter alibration are needed for reliable scoring of leaf phenology in trees. Journal of Ecology, 2021, 109, 2461-2474.	4.0	7
57	Changement climatique et biosphère. Comptes Rendus - Geoscience, 2020, 352, 339-354.	1.2	1