List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8764408/publications.pdf Version: 2024-02-01

212 papers	21,203 citations	13099 68 h-index	11607 135 g-index
217 all docs	217 docs citations	217 times ranked	7500 citing authors

#	Article	IF	CITATIONS
1	Simulating galaxy formation with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4077-4106.	4.4	1,144
2	First results from the IllustrisTNG simulations: matter and galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2018, 475, 676-698.	4.4	1,035
3	First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 648-675.	4.4	983
4	First results from the IllustrisTNG simulations: the galaxy colour bimodality. Monthly Notices of the Royal Astronomical Society, 2018, 475, 624-647.	4.4	894
5	First results from the IllustrisTNG simulations: a tale of two elements – chemical evolution of magnesium and europium. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1206-1224.	4.4	746
6	Simulating galaxy formation with black hole driven thermal and kinetic feedback. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3291-3308.	4.4	725
7	The IllustrisTNG simulations: public data release. Computational Astrophysics and Cosmology, 2019, 6,	22.7	698
8	First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	643
9	First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3234-3261.	4.4	510
10	First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3196-3233.	4.4	453
11	Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1156-1172.	4.4	381
12	NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES. Astrophysical Journal Letters, 2012, 747, L10.	8.3	336
13	Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass â^1⁄40.9M⊙. Nature, 2010, 463, 61-64.	27.8	307
14	DETONATIONS IN SUB-CHANDRASEKHAR-MASS C+O WHITE DWARFS. Astrophysical Journal Letters, 2010, 714, L52-L57.	8.3	296
15	The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. Monthly Notices of the Royal Astronomical Society, 0, , stx071.	4.4	293
16	The formation of disc galaxies in high-resolution moving-mesh cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1750-1775.	4.4	289
17	Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4056-4072.	4.4	270
18	The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4140-4159.	4.4	236

#	Article	IF	CITATIONS
19	Simulations of magnetic fields in isolated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 432, 176-193.	4.4	231
20	Improving the convergence properties of the moving-mesh code AREPO. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1134-1143.	4.4	231
21	HELIUM-IGNITED VIOLENT MERGERS AS A UNIFIED MODEL FOR NORMAL AND RAPIDLY DECLINING TYPE Ia SUPERNOVAE. Astrophysical Journal Letters, 2013, 770, L8.	8.3	217
22	Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1762-1783.	4.4	208
23	The AREPO Public Code Release. Astrophysical Journal, Supplement Series, 2020, 248, 32.	7.7	196
24	The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3976-3996.	4.4	195
25	Magnetohydrodynamics on an unstructured moving grid. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1392-1401.	4.4	179
26	CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE. Astrophysical Journal Letters, 2012, 750, L19.	8.3	175
27	3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovaeâ~ Monthly Notices of the Royal Astronomical Society, 2013, 429, 2287-2297.	4.4	175
28	High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenariosâ~ Monthly Notices of the Royal Astronomical Society, 2011, 412, 2735-2762.	4.4	170
29	Violent mergers of nearly equal-mass white dwarf as progenitors of subluminous Type Ia supernovae. Astronomy and Astrophysics, 2011, 528, A117.	5.1	164
30	Cosmological simulations of the circumgalactic medium with 1 kpc resolution: enhanced H <scp>i</scp> column densities. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L85-L89.	3.3	149
31	Three Hypervelocity White Dwarfs in Gaia DR2: Evidence for Dynamically Driven Double-degenerate Double-detonation Type Ia Supernovae. Astrophysical Journal, 2018, 865, 15.	4.5	145
32	Ingredients for 21 cm Intensity Mapping. Astrophysical Journal, 2018, 866, 135.	4.5	139
33	Simulating cosmic ray physics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4500-4529.	4.4	137
34	Quenching and ram pressure stripping of simulated Milky Way satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 548-567.	4.4	135
35	The abundance, distribution, and physical nature of highly ionized oxygen O vi, O vii, and O viii in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2018, 477, 450-479.	4.4	133
36	Vertical disc heating in Milky Way-sized galaxies in a cosmological context. Monthly Notices of the Royal Astronomical Society, 2016, 459, 199-219.	4.4	132

#	Article	IF	CITATIONS
37	Simulating cosmic structure formation with the <scp>gadget</scp> -4 code. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2871-2949.	4.4	130
38	Stellar mergers as the origin of magnetic massive stars. Nature, 2019, 574, 211-214.	27.8	126
39	HYDRODYNAMIC MOVING-MESH SIMULATIONS OF THE COMMON ENVELOPE PHASE IN BINARY STELLAR SYSTEMS. Astrophysical Journal Letters, 2016, 816, L9.	8.3	123
40	The evolution of the mass-metallicity relation and its scatter in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	123
41	Solar abundance of manganese: a case for near Chandrasekhar-mass Type Ia supernova progenitors. Astronomy and Astrophysics, 2013, 559, L5.	5.1	122
42	GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES. Astrophysical Journal Letters, 2016, 824, L30.	8.3	122
43	MAGNETIC FIELDS IN COSMOLOGICAL SIMULATIONS OF DISK GALAXIES. Astrophysical Journal Letters, 2014, 783, L20.	8.3	121
44	Magnetic field formation in the Milky Way like disc galaxies of the Auriga project. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3185-3199.	4.4	120
45	THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS. Astrophysical Journal Letters, 2016, 827, L29.	8.3	113
46	The Auriga stellar haloes: connecting stellar population properties with accretion and merging history. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2589-2616.	4.4	113
47	On the brightness distribution of Type Ia supernovae from violent white dwarf mergers. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1425-1436.	4.4	107
48	Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type lax supernova 2008ha. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3045-3053.	4.4	104
49	The mass of the Milky Way from satellite dynamics. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5453-5467.	4.4	102
50	Resolving small-scale cold circumgalactic gas in TNG50. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2391-2414.	4.4	100
51	Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 768-792.	4.4	100
52	High-redshift <i>JWST</i> predictions from IllustrisTNG: dust modelling and galaxy luminosity functions. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5167-5201.	4.4	99
53	The fraction of dark matter within galaxies from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1950-1975.	4.4	97
54	Origin of chemically distinct discs in the Auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3629-3639.	4.4	97

#	Article	IF	CITATIONS
55	The impact of type la supernovae on main sequence binary companions. Astronomy and Astrophysics, 2008, 489, 943-951.	5.1	95
56	Three-dimensional simulations of the interaction between Type Ia supernova ejecta and their main sequence companions. Astronomy and Astrophysics, 2012, 548, A2.	5.1	94
57	The origin of galactic metal-rich stellar halo components with highly eccentric orbits. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4471-4483.	4.4	89
58	Introducing the <scp>thesan</scp> project: radiation-magnetohydrodynamic simulations of the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4005-4030.	4.4	88
59	Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 333-347.	4.4	87
60	Quenched fractions in the IllustrisTNG simulations: the roles of AGN feedback, environment, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4004-4024.	4.4	86
61	Stellar <scp>gadget</scp> : a smoothed particle hydrodynamics code for stellar astrophysics and its application to Type Ia supernovae from white dwarf mergers. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2222-2231.	4.4	82
62	Warps and waves in the stellar discs of the Auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3446-3460.	4.4	79
63	A fully cosmological model of a Monoceros-like ring. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2779-2793.	4.4	75
64	Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L16-L20.	3.3	75
65	The local high-velocity tail and the Galactic escape speed. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3514-3526.	4.4	75
66	Simulating the interaction of jets with the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4530-4546.	4.4	74
67	THE IMPACT OF TYPE Ia SUPERNOVA EXPLOSIONS ON HELIUM COMPANIONS IN THE CHANDRASEKHAR-MASS EXPLOSION SCENARIO. Astrophysical Journal, 2013, 774, 37.	4.5	73
68	Chemodynamics of barred galaxies in cosmological simulations: On the Milky Way's quiescent merger history and <i>in-situ</i> bulge. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5936-5960.	4.4	72
69	The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2073-2093.	4.4	71
70	The dual origin of the Galactic thick disc and halo from the gas-rich Gaia–Enceladus Sausage merger. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1603-1618.	4.4	71
71	Spiral-induced velocity and metallicity patterns in a cosmological zoom simulation of a Milky Way-sized galaxy. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L94-L98.	3.3	70
72	Gas accretion and galactic fountain flows in the Auriga cosmological simulations: angular momentum and metal redistribution. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4786-4803.	4.4	69

#	Article	IF	CITATIONS
73	<scp>arepo-rt</scp> : radiation hydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2019, 485, 117-149.	4.4	69
74	A census of cool-core galaxy clusters in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1809-1831.	4.4	68
75	Simulations of the dynamics of magnetized jets and cosmic rays in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2878-2900.	4.4	67
76	The dependence of cosmic ray-driven galactic winds on halo mass. Monthly Notices of the Royal Astronomical Society, 2018, 475, 570-584.	4.4	65
77	A Quantification of the Butterfly Effect in Cosmological Simulations and Implications for Galaxy Scaling Relations. Astrophysical Journal, 2019, 871, 21.	4.5	65
78	The effects of cosmic rays on the formation of Milky Way-mass galaxies in a cosmological context. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1712-1737.	4.4	64
79	The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4428-4439.	4.4	63
80	No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4790-4804.	4.4	62
81	The effect of magnetic fields on properties of the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4888-4902.	4.4	62
82	The large-scale properties of simulated cosmological magnetic fields. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4000-4020.	4.4	60
83	Nucleosynthesis in thermonuclear supernovae with tracers: convergence and variable mass particles. Monthly Notices of the Royal Astronomical Society, 0, 407, 2297-2304.	4.4	58
84	SN 2010LP—A TYPE IA SUPERNOVA FROM A VIOLENT MERGER OF TWO CARBON-OXYGEN WHITE DWARFS. Astrophysical Journal Letters, 2013, 778, L18.	8.3	58
85	The slight spin of the old stellar halo. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1259-1273.	4.4	58
86	Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T. Astronomy and Astrophysics, 2016, 592, A57.	5.1	56
87	The <scp>hestia</scp> project: simulations of the Local Group. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2968-2983.	4.4	56
88	Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 219-235.	4.4	56
89	The Redshift Evolution of the Binary Black Hole Merger Rate: A Weighty Matter. Astrophysical Journal, 2022, 931, 17.	4.5	56
90	The type lax supernova, SN 2015H. Astronomy and Astrophysics, 2016, 589, A89.	5.1	55

#	Article	IF	CITATIONS
91	Ultra-diffuse galaxies in the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5182-5195.	4.4	55
92	Type Ia supernovae from exploding oxygen-neon white dwarfs. Astronomy and Astrophysics, 2015, 580, A118.	5.1	54
93	[O I] λλ6300, 6364 IN THE NEBULAR SPECTRUM OF A SUBLUMINOUS TYPE Ia SUPERNOVA. Astrophysical Journal Letters, 2013, 775, L43.	8.3	52
94	â€~Super-Chandrasekhar' Type Ia Supernovae at nebular epochsâ~ Monthly Notices of the Royal Astronomical Society, 2013, 432, 3117-3130.	4.4	51
95	Semi-implicit anisotropic cosmic ray transport on an unstructured moving mesh. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2603-2616.	4.4	51
96	Type Ia supernovae from violent mergers of carbon–oxygen white dwarfs: polarization signatures. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1060-1070.	4.4	51
97	The Hubble Sequence at z â^1⁄4 0 in the IllustrisTNG simulation with deep learning. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1859-1879.	4.4	51
98	Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4867-4883.	4.4	51
99	Magnetic field amplification during the common envelope phase. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462, L121-L125.	3.3	50
100	Properties of H i discs in the Auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3859-3875.	4.4	50
101	A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 397-414.	4.4	49
102	500Âdays of SN 2013dy: spectra and photometry from the ultraviolet to the infrared. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4307-4325.	4.4	49
103	The mass of the Milky Way out to 100Âkpc using halo stars. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5964-5972.	4.4	49
104	Spectral modelling of the â€~super-Chandrasekhar' Type Ia SN 2009dc – testing a 2 M _⊙ dwarf explosion model and alternatives. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2057-2078.	white 4.4	48
105	Powering galactic superwinds with small-scale AGN winds. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5229-5255.	4.4	48
106	SNe Ia from double detonations: Impact of core-shell mixing on the carbon ignition mechanism. Astronomy and Astrophysics, 2020, 635, A169.	5.1	48
107	Constructing stable 3D hydrodynamical models of giant stars. Astronomy and Astrophysics, 2017, 599, A5.	5.1	46
108	Lessons from the Auriga discs: the hunt for the Milky Way's ex situ disc is not yet over. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3722-3733.	4.4	46

#	Article	IF	CITATIONS
109	Subhalo destruction in the Apostle and Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5780-5793.	4.4	46
110	Simulating Gamma-Ray Emission in Star-forming Galaxies. Astrophysical Journal Letters, 2017, 847, L13.	8.3	45
111	Faraday rotation maps of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4410-4418.	4.4	44
112	Aurigaia: mock Gaia DR2 stellar catalogues from the auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1726-1743.	4.4	44
113	The <scp>thesan</scp> project: properties of the intergalactic medium and its connection to reionization-era galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4909-4933.	4.4	44
114	Diffuse gas properties and stellar metallicities in cosmological simulations of disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3745-3760.	4.4	43
115	Determining the full satellite population of a Milky Way-mass halo in a highly resolved cosmological hydrodynamic simulation. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4953-4967.	4.4	42
116	Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4279-4301.	4.4	40
117	A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2016, 463, 477-488.	4.4	40
118	Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction. Astrophysical Journal Letters, 2017, 837, L18.	8.3	40
119	The prevalence of pseudo-bulges in the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5742-5763.	4.4	40
120	Magnetizing the circumgalactic medium of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3125-3137.	4.4	40
121	A tale of two populations: surviving and destroyed dwarf galaxies and the build-up of the MilkyÂWay's stellar halo. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4459-4471.	4.4	40
122	Gas-phase metallicity gradients of TNG50 star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3024-3048.	4.4	40
123	Separate Universe simulations with IllustrisTNG: baryonic effects on power spectrum responses and higher-order statistics. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2079-2092.	4.4	39
124	Revisiting the tension between fast bars and the $\hat{ ho}$ CDM paradigm. Astronomy and Astrophysics, 2021, 650, L16.	5.1	38
125	Rotation of surviving companion stars after typeÂla supernova explosions in the WD+MS scenario. Astronomy and Astrophysics, 2013, 554, A109.	5.1	37
126	MAGNETIZED MOVING MESH MERGER OF A CARBON–OXYGEN WHITE DWARF BINARY. Astrophysical Journal Letters, 2015, 806, L1.	8.3	37

#	Article	IF	CITATIONS
127	Long-term evolution of a magnetic massive merger product. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2796-2812.	4.4	37
128	Common-envelope evolution with an asymptotic giant branch star. Astronomy and Astrophysics, 2020, 644, A60.	5.1	37
129	Spectral analysis of the 91bg-like Type Ia SN 2005bl: low luminosity, low velocities, incomplete burning. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1238-1254.	4.4	36
130	Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1039-1056.	4.4	36
131	The buildup of strongly barred galaxies in the TNG100 simulation. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	36
132	The <scp>thesan</scp> project: Lyman-α emission and transmission during the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3243-3265.	4.4	36
133	On the stellar halo metallicity profile of Milky Way-like galaxies in the Auriga simulations. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L46-L50.	3.3	35
134	LYRA I: Simulating the multi-phase ISM of a dwarf galaxy with variable energy supernovae from individual stars. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	35
135	Evolution of cosmic ray electron spectra in magnetohydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2235-2252.	4.4	34
136	The effects of dynamical substructure on Milky Way mass estimates from the high-velocity tail of the local stellar halo. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 487, L72-L76.	3.3	34
137	Dark matter halo shapes in the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4877-4888.	4.4	33
138	Thermonuclear explosion of a massive hybrid HeCO white dwarf triggered by a He detonation on a companion. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4734-4747.	4.4	33
139	PREDICTING THE AMOUNT OF HYDROGEN STRIPPED BY THE SN EXPLOSION FOR SN 2002cx-LIKE SNe Ia. Astrophysical Journal, 2013, 778, 121.	4.5	32
140	The velocity anisotropy of the Milky Way satellite system. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2679-2694.	4.4	32
141	The Progenitors of Calcium-strong Transients. Astrophysical Journal, 2019, 887, 180.	4.5	32
142	Quiescent ultra-diffuse galaxies in the field originating from backsplash orbits. Nature Astronomy, 2021, 5, 1255-1260.	10.1	32
143	Hydrodynamical moving-mesh simulations of the tidal disruption of stars by supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 981-992.	4.4	31
144	The star formation histories of dwarf galaxies in Local Group cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5423-5437.	4.4	31

#	Article	IF	CITATIONS
145	The <scp>thesan</scp> project: predictions for multitracer line intensity mapping in the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3857-3878.	4.4	31
146	Accurately simulating anisotropic thermal conduction on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2016, 458, 410-424.	4.4	30
147	Formation of sdB-stars via common envelope ejection by substellar companions. Astronomy and Astrophysics, 2020, 642, A97.	5.1	30
148	Spectrally resolved cosmic rays – II. Momentum-dependent cosmic ray diffusion drives powerful galactic winds. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3917-3938.	4.4	30
149	The white dwarf's carbon fraction as a secondary parameter of Type Ia supernovae. Astronomy and Astrophysics, 2014, 572, A57.	5.1	28
150	A search for a surviving companion in SN 1006. Monthly Notices of the Royal Astronomical Society, 2018, 479, 192-199.	4.4	28
151	Gamma-ray diagnostics of Type Ia supernovae. Astronomy and Astrophysics, 2013, 554, A67.	5.1	28
152	Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L18-L22.	3.3	27
153	The effect of cosmic ray acceleration on supernova blast wave dynamics. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5278-5295.	4.4	27
154	Stellar populations across galaxy bars in the MUSE TIMER project. Astronomy and Astrophysics, 2020, 637, A56.	5.1	27
155	Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5188-5215.	4.4	26
156	5.9-keV Mn K-shell X-ray luminosity from the decay of 55Fe in Type Ia supernova models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1484-1490.	4.4	25
157	Shock finding on a moving-mesh – II. Hydrodynamic shocks in the Illustris universe. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4441-4465.	4.4	24
158	High-order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discontinuous Galerkin scheme. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4209-4246.	4.4	24
159	Correlations between Black Holes and Host Galaxies in the Illustris and IllustrisTNG Simulations. Astrophysical Journal, 2020, 895, 102.	4.5	24
160	Bipolar planetary nebulae from common-envelope evolution of binary stars. Astronomy and Astrophysics, 2022, 660, L8.	5.1	24
161	Thermonuclear explosions of rapidly differentially rotating white dwarfs: Candidates for superluminous Type Ia supernovae?. Astronomy and Astrophysics, 2018, 618, A124.	5.1	23
162	Magnetogenesis around the first galaxies: the impact of different field seeding processes on galaxy formation. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5726-5744.	4.4	23

#	Article	IF	CITATIONS
163	Cosmic rays and non-thermal emission in simulated galaxies â^' I. Electron and proton spectra compared to Voyager-1 data. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3273-3294.	4.4	23
164	Enhancing AGN efficiency and cool-core formation with anisotropic thermal conduction. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3003-3013.	4.4	22
165	Modeling Type Ia supernova explosions. Progress in Particle and Nuclear Physics, 2011, 66, 309-318.	14.4	21
166	Satellites of Satellites: The Case for Carina and Fornax. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	21
167	warpfield population synthesis: the physics of (extra-)Galactic star formation and feedback-driven cloud structure and emission from sub-to-kpc scales. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3193-3214.	4.4	21
168	Galactic angular momentum in the IllustrisTNG simulation – I. Connection to morphology, halo spin, and black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5978-5994.	4.4	21
169	The morphology and kinematics of the gaseous circumgalactic medium of Milky Way mass galaxies – II. Comparison of IllustrisTNG and Illustris simulation results. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4686-4700.	4.4	20
170	Submillimetre galaxies in cosmological hydrodynamical simulations – an opportunity for constraining feedback models. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2922-2933.	4.4	20
171	A finite volume method for two-moment cosmic ray hydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2242-2264.	4.4	20
172	Structural and photometric properties of barred galaxies from the Auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1800-1819.	4.4	20
173	SNÂ2012dn from early to late times: 09dc-like supernovae reassessedâ~ Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	19
174	A study of stellar orbit fractions: simulated IllustrisTNG galaxies compared to CALIFA observations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 842-854.	4.4	19
175	Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far-infrared–radio correlation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4229-4264.	4.4	19
176	Reducing noise in moving-grid codes with strongly-centroidal Lloyd mesh regularization. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3853-3862.	4.4	17
177	The orbital phase space of contracted dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 495, 12-28.	4.4	17
178	The kinematics and dark matter fractions of TNG50 galaxies at <i>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619.	4.4	17
179	LYRA – II. Cosmological dwarf galaxy formation with inhomogeneous Population III enrichment. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1372-1385.	4.4	17
180	The diversity of the circumgalactic medium around z = 0 Milky Way-mass galaxies from the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 135-152.	4.4	16

#	Article	IF	CITATIONS
181	On the relevance of chaos for halo stars in the solar neighbourhood II. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4052-4067.	4.4	15
182	Mass of the dynamically hot inner stellar halo predicts the ancient accreted stellar mass. Astronomy and Astrophysics, 2022, 660, A20.	5.1	15
183	Non-ideal magnetohydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2476-2492.	4.4	14
184	Simulating cosmological substructure in the solar neighbourhood. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 490, L32-L37.	3.3	14
185	The impact of magnetic fields on cosmological galaxy mergers – I. Reshaping gas and stellar discs. Monthly Notices of the Royal Astronomical Society, 2021, 506, 229-255.	4.4	14
186	The impact of natal kicks on galactic r-process enrichment by neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5258-5268.	4.4	14
187	The effects of AGN feedback on the structural and dynamical properties of Milky Way-mass galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3768-3787.	4.4	14
188	A Tidally Induced Global Corrugation Pattern in an External Disk Galaxy Similar to the Milky Way. Astrophysical Journal, 2021, 908, 27.	4.5	13
189	On the correlation between the local dark matter and stellar velocities. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	5.4	12
190	AREPO-MCRT: Monte Carlo Radiation Hydrodynamics on a Moving Mesh. Astrophysical Journal, 2020, 905, 27.	4.5	12
191	Apostle–Auriga: effects of different subgrid models on the baryon cycle around Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3113-3138.	4.4	12
192	The globular cluster system of the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 638-648.	4.4	11
193	Braginskii viscosity on an unstructured, moving mesh accelerated with super-time-stepping. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2919-2938.	4.4	10
194	High and low Sérsic index bulges in Milky Way- and M31-like galaxies: origin and connection to the bar with TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2537-2555.	4.4	9
195	White dwarf deflagrations for Type lax supernovae: polarisation signatures from the explosion and companion interaction. Astronomy and Astrophysics, 2020, 635, A179.	5.1	8
196	Observing the Stellar Halo of Andromeda in Cosmological Simulations: The AURIGA2PANDAS Pipeline. Astrophysical Journal, 2021, 910, 92.	4.5	6
197	Linking the brightest stellar streams with the accretion history of Milky Way like galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4898-4911.	4.4	6
198	Probabilistic Reconstruction of Type Ia Supernova SN 2002bo. Astrophysical Journal Letters, 2021, 916, L14.	8.3	5

#	Article	IF	CITATIONS
199	Violent Mergers. , 2017, , 1257-1273.		4
200	A metric space for Type la supernova spectra: a new method to assess explosion scenarios. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3784-3809.	4.4	4
201	Formation and fate of low-metallicity stars in TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3602-3615.	4.4	4
202	First Results from SMAUG: Insights into Star Formation Conditions from Spatially Resolved ISM Properties in TNG50. Astrophysical Journal, 2022, 926, 139.	4.5	3
203	Hermeian haloes: Field haloes that interacted with both the Milky Way and M31. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3612-3625.	4.4	3
204	Cosmic ray feedback in galaxies and active galactic nuclei. AIP Conference Proceedings, 2017, , .	0.4	2
205	Magnetic fields and cosmic rays in galaxy clusters and large scale structures. Proceedings of the International Astronomical Union, 2008, 4, 519-528.	0.0	1
206	Type Ia Supernovae from Sub-Chandrasekhar Mass White Dwarfs. Proceedings of the International Astronomical Union, 2011, 7, 267-274.	0.0	1
207	Thermonuclear Supernova Explosions from White Dwarfs in Different Progenitor Systems. Proceedings of the International Astronomical Union, 2011, 7, 261-266.	0.0	0
208	The TNG50 Simulation of the IllustrisTNG Project: Bridging the Gap Between Large Cosmological Volumes and Resolved Galaxies. , 2019, , 5-20.		0
209	The TNG50 Simulation: Highly-Resolved Galaxies in a Large Cosmological Volume to the Present Day. , 2021, , 5-22.		0
210	Type Ia Supernovae (invited talk). , 2011, , .		0
211	Violent Mergers. , 2016, , 1-17.		0
212	EXAMAC: Towards Exascale Simulations of the Magnetic Universe. Lecture Notes in Computational Science and Engineering, 2020, , 331-350.	0.3	0