Wright W Nichols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8763109/publications.pdf

Version: 2024-02-01

41 papers 1,838 citations

279798 23 h-index 289244 40 g-index

41 all docs

41 docs citations

41 times ranked

1442 citing authors

#	Article	IF	Citations
1	<i>In Vitro</i> Selection of Ceftazidime-Avibactam Resistance in Enterobacteriaceae with KPC-3 Carbapenemase. Antimicrobial Agents and Chemotherapy, 2015, 59, 5324-5330.	3.2	142
2	<i>In Vitro</i> Susceptibility of Global Surveillance Isolates of Pseudomonas aeruginosa to Ceftazidime-Avibactam (INFORM 2012 to 2014). Antimicrobial Agents and Chemotherapy, 2016, 60, 4743-4749.	3.2	132
3	<i>In Vitro</i> Susceptibility to Ceftazidime-Avibactam of Carbapenem-Nonsusceptible Enterobacteriaceae Isolates Collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrobial Agents and Chemotherapy, 2016, 60, 3163-3169.	3.2	125
4	$\langle i \rangle$ In Vitro $\langle i \rangle$ Susceptibility of Characterized \hat{l}^2 -Lactamase-Producing Strains Tested with Avibactam Combinations. Antimicrobial Agents and Chemotherapy, 2015, 59, 1789-1793.	3.2	114
5	Comparative <i>In Vitro</i> and <i>In Vivo</i> Efficacies of Human Simulated Doses of Ceftazidime and Ceftazidime-Avibactam against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2012, 56, 6137-6146.	3.2	107
6	Bactericidal Activity, Absence of Serum Effect, and Time-Kill Kinetics of Ceftazidime-Avibactam against β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2014, 58, 5297-5305.	3.2	101
7	Role of the Outer Membrane and Porins in Susceptibility of \hat{l}^2 -Lactamase-Producing Enterobacteriaceae to Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 2016, 60, 1349-1359.	3.2	97
8	Pharmacodynamics of Ceftazidime and Avibactam in Neutropenic Mice with Thigh or Lung Infection. Antimicrobial Agents and Chemotherapy, 2016, 60, 368-375.	3.2	87
9	<i>In Vitro</i> Activities of Ceftazidime-Avibactam and Aztreonam-Avibactam against 372 Gram-Negative Bacilli Collected in 2011 and 2012 from 11 Teaching Hospitals in China. Antimicrobial Agents and Chemotherapy, 2014, 58, 1774-1778.	3.2	81
10	Activities of Ceftazidime and Avibactam against \hat{l}^2 -Lactamase-Producing Enterobacteriaceae in a Hollow-Fiber Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2014, 58, 3366-3372.	3.2	74
11	Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria. Antimicrobial Agents and Chemotherapy, 2016, 60, 752-756.	3.2	63
12	Avibactam Pharmacokinetic/Pharmacodynamic Targets. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	62
13	Efficacies of Ceftazidime-Avibactam and Ceftazidime against Pseudomonas aeruginosa in a Murine Lung Infection Model. Antimicrobial Agents and Chemotherapy, 2014, 58, 1365-1371.	3.2	55
14	Dose Selection and Validation for Ceftazidime-Avibactam in Adults with Complicated Intra-abdominal Infections, Complicated Urinary Tract Infections, and Nosocomial Pneumonia. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	51
15	Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis. International Journal of Antimicrobial Agents, 2018, 52, 697-701.	2.5	47
16	Avibactam reverts the ceftazidime MIC90 of European Gram-negative bacterial clinical isolates to the epidemiological cut-off value. Journal of Chemotherapy, 2014, 26, 333-338.	1.5	45
17	Pharmacokinetics and Penetration of Ceftazidime and Avibactam into Epithelial Lining Fluid in Thighand Lung-Infected Mice. Antimicrobial Agents and Chemotherapy, 2015, 59, 2299-2304.	3.2	43
18	<i>In Vivo</i> Efficacy of Humanized Exposures of Ceftazidime-Avibactam in Comparison with Ceftazidime against Contemporary Enterobacteriaceae Isolates. Antimicrobial Agents and Chemotherapy, 2014, 58, 6913-6919.	3.2	42

#	Article	IF	Citations
19	Activities of ceftazidime, ceftaroline, and aztreonam alone and combined with avibactam against isogenic Escherichia coli strains expressing selected single \hat{l}^2 -lactamases. Diagnostic Microbiology and Infectious Disease, 2015, 82, 65-69.	1.8	38
20	<i>In Vitro</i> Activity of Ceftazidime-Avibactam Combination in <i>In Vitro</i> Checkerboard Assays. Antimicrobial Agents and Chemotherapy, 2015, 59, 1138-1144.	3.2	37
21	In vitro activity of ceftazidime/avibactam against Gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients. International Journal of Antimicrobial Agents, 2016, 47, 235-242.	2.5	30
22	Structural and sequence analysis of class A \hat{l}^2 -lactamases with respect to avibactam inhibition: impact of \hat{l} ©-loop variations. Journal of Antimicrobial Chemotherapy, 2016, 71, 2848-2855.	3.0	26
23	Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESBL-and AmpC-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 2018, 73, 3336-3345.	3.0	26
24	\hat{l}^2 -Lactamase Characterization of Gram-Negative Pathogens Recovered from Patients Enrolled in the Phase 2 Trials for Ceftazidime-Avibactam: Clinical Efficacies Analyzed against Subsets of Molecularly Characterized Isolates. Antimicrobial Agents and Chemotherapy, 2016, 60, 1328-1335.	3.2	24
25	A mathematical model-based analysis of the time–kill kinetics of ceftazidime/avibactam against Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2018, 73, 1295-1304.	3.0	24
26	Ceftazidime-Avibactam Susceptibility Breakpoints against Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	21
27	Modeling the Kinetics of the Permeation of Antibacterial Agents into Growing Bacteria and Its Interplay with Efflux. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	20
28	AmpC \hat{l}^2 -lactamase induction by avibactam and relebactam. Journal of Antimicrobial Chemotherapy, 2017, 72, 3342-3348.	3.0	20
29	A model-based analysis of pharmacokinetic–pharmacodynamic (PK/PD) indices of avibactam against Pseudomonas aeruginosa. Clinical Microbiology and Infection, 2019, 25, 904.e9-904.e16.	6.0	14
30	Towards a fundamental understanding of the MIC of \hat{l}^2 -lactam antibiotics. Journal of Antimicrobial Chemotherapy, 1988, 22, 275-283.	3.0	13
31	The in vitro activity of ceftazidime–avibactam against 417 Gram-negative bacilli collected in 2014 and 2015 at a teaching hospital in São Paulo, Brazil. Brazilian Journal of Infectious Diseases, 2017, 21, 569-573.	0.6	13
32	The postantibiotic effect and post- \hat{l}^2 -lactamase-inhibitor effect of ceftazidime, ceftaroline and aztreonam in combination with avibactam against target Gram-negative bacteria. Letters in Applied Microbiology, 2016, 63, 96-102.	2.2	9
33	Selecting the dosage of ceftazidime–avibactam in the perfect storm of nosocomial pneumonia. European Journal of Clinical Pharmacology, 2020, 76, 349-361.	1.9	9
34	The primary pharmacology of ceftazidime/avibactam: <i>in vivo</i> translational biology and pharmacokinetics/pharmacodynamics (PK/PD). Journal of Antimicrobial Chemotherapy, 2022, 77, 2341-2352.	3.0	9
35	Estimation of the permeability parameter (C) for the flux of a charged molecule across the Gram-negative bacterial outer membrane. Biochemical Society Transactions, 1985, 13, 697-698.	3.4	8
36	Permeability of Bacteria to Antibacterial Agents. , 2012, , 849-879.		8

#	Article	IF	CITATIONS
37	Inhibitory activity of avibactam against selected \hat{l}^2 -lactamases expressed in an isogenic Escherichia coli strain. Diagnostic Microbiology and Infectious Disease, 2016, 86, 83-85.	1.8	8
38	Efficacy of ceftazidime–avibactam in a rat intra-abdominal abscess model against a ceftazidime- and meropenem-resistant isolate of ⟨i⟩Klebsiella pneumoniae⟨/i⟩ carrying ⟨i⟩bla⟨/i⟩⟨sub⟩KPC-2⟨/sub⟩. Journal of Chemotherapy, 2018, 30, 95-100.	1.5	5
39	The primary pharmacology of ceftazidime/avibactam: <i>in vitro</i> translational biology. Journal of Antimicrobial Chemotherapy, 2022, 77, 2321-2340.	3.0	4
40	Impact of defined cell envelope mutations in Escherichia coli on the in vitro antibacterial activity of avibactam/ \hat{l}^2 -lactam combinations. International Journal of Antimicrobial Agents, 2017, 49, 437-442.	2.5	3
41	Evaluation of the post-antibiotic effect in vivo for the combination of a \hat{l}^2 -lactam antibiotic and a \hat{l}^2 -lactamase inhibitor: ceftazidime-avibactam in neutropenic mouse thigh and lung infections. Journal of Chemotherapy, 2021, 33, 400-408.	1.5	1