Xiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8762608/publications.pdf

Version: 2024-02-01

		567281	888059		
19	1,185	15	17		
papers	citations	h-index	g-index		
19	19	19	1856		
all docs	docs citations	times ranked	citing authors		

#	Article	IF	CITATIONS
1	Solution-Phase Single Quantum Dot Fluorescence Resonance Energy Transfer. Journal of the American Chemical Society, 2006, 128, 15324-15331.	13.7	272
2	QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosensors and Bioelectronics, 2010, 25, 1934-1940.	10.1	133
3	Magnetic Iron Oxide Nanoparticles for Biorecognition:Â Evaluation of Surface Coverage and Activity. Journal of Physical Chemistry B, 2006, 110, 1553-1558.	2.6	121
4	A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nature Methods, 2011, 8, 143-146.	19.0	110
5	Chitosan-Mediated and Spatially Selective Electrodeposition of Nanoscale Particles. Langmuir, 2005, 21, 3641-3646.	3.5	90
6	Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Molecular Pharmaceutics, 2019, 16, 1958-1970.	4.6	72
7	Surfactant Vesicles for High-Efficiency Capture and Separation of Charged Organic Solutes. Langmuir, 2007, 23, 8965-8971.	3.5	53
8	Catanionic surfactant vesicles for electrostatic molecular sequestration and separation. Physical Chemistry Chemical Physics, 2009, 11, 9315.	2.8	53
9	Exploring one-state downhill protein folding in single molecules. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 179-184.	7.1	53
10	Highly Efficient Capture and Long-Term Encapsulation of Dye by Catanionic Surfactant Vesicles. Langmuir, 2006, 22, 6461-6464.	3.5	48
11	Therapeutic Effects of PPARα Agonist on Ocular Neovascularization in Models Recapitulating Neovascular Age-Related Macular Degeneration. , 2017, 58, 5065.		44
12	Total internal reflection with fluorescence correlation spectroscopy: Applications to substrate-supported planar membranes. Journal of Structural Biology, 2009, 168, 95-106.	2.8	28
13	Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. Journal of Physical Chemistry B, 2013, 117, 13120-13131.	2.6	22
14	The Formation and Stability of <scp>DCâ€SIGN</scp> Microdomains Require its Extracellular Moiety. Traffic, 2012, 13, 715-726.	2.7	21
15	Singleâ€Molecule Colocalization Studies Shed Light on the Idea of Fully Emitting versus Dark Single Quantum Dots. Small, 2011, 7, 2101-2108.	10.0	18
16	Reversible Vesicle Restraint in Response to Spatiotemporally Controlled Electrical Signals:  A Bridge between Electrical and Chemical Signaling Modes. Langmuir, 2007, 23, 286-291.	3.5	17
17	Low Copy Numbers of <scp>DCâ€SIGN</scp> in Cell Membrane Microdomains: Implications forÂStructure and Function. Traffic, 2014, 15, 179-196.	2.7	17
18	Measuring Surface Binding Thermodynamics and Kinetics by Using Total Internal Reflection with Fluorescence Correlation Spectroscopy: Practical Considerations. Journal of Physical Chemistry B, 2011, 115, 120-131.	2.6	13

#	Article	IF	CITATIONS
19	Total Internal Reflection with Fluorescence Correlation Spectroscopy. Reviews in Fluorescence, 2011, , 345-380.	0.5	0