
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/876052/publications.pdf Version: 2024-02-01

MAODELA

#	Article	IF	CITATIONS
1	Epithelial–mesenchymal transition in colorectal cancer metastasis: A system review. Pathology Research and Practice, 2015, 211, 557-569.	2.3	307
2	Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinformatics, 2017, 18, 281.	2.6	306
3	Weakly supervised histopathology cancer image segmentation and classification. Medical Image Analysis, 2014, 18, 591-604.	11.6	217
4	Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer and Metastasis Reviews, 2018, 37, 173-187.	5.9	201
5	Long non-coding RNA LINC01133 inhibits epithelial–mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Letters, 2016, 380, 476-484.	7.2	168
6	Bindingâ€Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids. Angewandte Chemie - International Edition, 2015, 54, 14326-14330.	13.8	158
7	Identification of Serum Biomarkers for Colorectal Cancer Metastasis Using a Differential Secretome Approach. Journal of Proteome Research, 2010, 9, 545-555.	3.7	152
8	MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Letters, 2015, 356, 781-790.	7.2	146
9	GDF15 promotes EMT and metastasis in colorectal cancer. Oncotarget, 2016, 7, 860-872.	1.8	121
10	SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer. Gut, 2019, 68, 118-129.	12.1	121
11	Sox9 regulates selfâ€renewal and tumorigenicity by promoting symmetrical cell division of cancer stem cells in hepatocellular carcinoma. Hepatology, 2016, 64, 117-129.	7.3	114
12	Aberrantly expressed Fra-1 by IL-6/STAT3 transactivation promotes colorectal cancer aggressiveness through epithelial–mesenchymal transition. Carcinogenesis, 2015, 36, 459-468.	2.8	113
13	The long non-coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Molecular Cancer, 2018, 17, 110.	19.2	108
14	Deep convolutional activation features for large scale Brain Tumor histopathology image classification and segmentation. , 2015, , .		106
15	IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. Stem Cells, 2016, 34, 820-831.	3.2	101
16	SIRT1â€mediated transcriptional regulation of SOX2 is important for selfâ€renewal of liver cancer stem cells. Hepatology, 2016, 64, 814-827.	7.3	99
17	IGFBP7 plays a potential tumor suppressor role in colorectal carcinogenesis. Cancer Biology and Therapy, 2007, 6, 354-359.	3.4	91
18	Differential Expression of Mimecan and Thioredoxin Domain–Containing Protein 5 in Colorectal Adenoma and Cancer: A Proteomic Study. Experimental Biology and Medicine, 2007, 232, 1152-1159.	2.4	80

#	Article	IF	CITATIONS
19	TSVdb: a web-tool for TCGA splicing variants analysis. BMC Genomics, 2018, 19, 405.	2.8	78
20	Deep learning in digital pathology image analysis: a survey. Frontiers of Medicine, 2020, 14, 470-487.	3.4	77
21	IL-13/STAT6 signaling plays a critical role in the epithelial-mesenchymal transition of colorectal cancer cells. Oncotarget, 2016, 7, 61183-61198.	1.8	75
22	<scp>HOTAIRM</scp> 1 as a potential biomarker for diagnosis of colorectal cancer functions the role in the tumour suppressor. Journal of Cellular and Molecular Medicine, 2016, 20, 2036-2044.	3.6	72
23	The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis. Cell Adhesion and Migration, 2016, 10, 1-13.	2.7	72
24	Tumor-associated macrophages remodeling EMT and predicting survival in colorectal carcinoma. Oncolmmunology, 2018, 7, e1380765.	4.6	71
25	Expert consensus on multidisciplinary therapy of colorectal cancer with lung metastases (2019) Tj ETQq1 1 0.784	1314 rgBT 17.0	Qyerlock
26	A single nucleotide polymorphism in the matrix metalloproteinase-2 promoter is associated with colorectal cancer. Biochemical and Biophysical Research Communications, 2004, 324, 999-1003.	2.1	62
27	Lipocalin2 suppresses metastasis of colorectal cancer by attenuating NF-κB-dependent activation of snail and epithelial mesenchymal transition. Molecular Cancer, 2016, 15, 77.	19.2	61
28	Transcriptional activation of FN1 and IL11 by HMGA2 promotes the malignant behavior of colorectal cancer. Carcinogenesis, 2016, 37, 511-521.	2.8	61
29	Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: a multiâ€stage genomeâ€wide association study. Journal of Cellular and Molecular Medicine, 2017, 21, 1106-1116.	3.6	56
30	Identification of differentially expressed proteins in colorectal cancer by proteomics: Down-regulation of secretagogin. Proteomics, 2006, 6, 2916-2923.	2.2	55
31	Molecular mechanisms of microRNAs in regulating epithelial–mesenchymal transitions in human cancers. Cancer Letters, 2016, 371, 301-313.	7.2	53
32	The integrated pathway of TGFβ/Snail with TNFα/NFκB may facilitate the tumor-stroma interaction in the EMT process and colorectal cancer prognosis. Scientific Reports, 2017, 7, 4915.	3.3	45
33	5-Hydroxymethylcytosine and disease. Mutation Research - Reviews in Mutation Research, 2014, 762, 167-175.	5.5	44
34	S100A8 promotes epithelialâ€mesenchymal transition and metastasis under TGFâ€Î²/USF2 axis in colorectal cancer. Cancer Communications, 2021, 41, 154-170.	9.2	44
35	Evaluation of IGFBP-7 DNA methylation changes and serum protein variation in Swedish subjects with and without type 2 diabetes. Clinical Epigenetics, 2013, 5, 20.	4.1	40
36	Growth differentiation factor 15 is a promising diagnostic and prognostic biomarker in colorectal cancer. Journal of Cellular and Molecular Medicine, 2016, 20, 1420-1426.	3.6	40

#	Article	IF	CITATIONS
37	Tyrosine and Glutamine-Leucine Are Metabolic Markers of Early-Stage Colorectal Cancers. Gastroenterology, 2019, 157, 257-259.e5.	1.3	40
38	Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population. International Journal of Environmental Research and Public Health, 2015, 12, 13662-13677.	2.6	38
39	Reactivation of IGFBP7 by DNA demethylation inhibits human colon cancer cell growth in vitro. Cancer Biology and Therapy, 2008, 7, 1896-1900.	3.4	37
40	Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Molecular Cancer, 2022, 21, 46.	19.2	35
41	Serum IGFBP7 levels associate with insulin resistance and the risk of metabolic syndrome in a Chinese population. Scientific Reports, 2015, 5, 10227.	3.3	33
42	HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma. Journal of Experimental and Clinical Cancer Research, 2010, 29, 41.	8.6	32
43	Additively protective effects of vitamin D and calcium against colorectal adenoma incidence, malignant transformation and progression: A systematic review and meta-analysis. Clinical Nutrition, 2020, 39, 2525-2538.	5.0	31
44	STC2 overexpression mediated by HMGA2 is a biomarker for aggressiveness of high-grade serous ovarian cancer. Oncology Reports, 2015, 34, 1494-1502.	2.6	30
45	HMGA2 enhances 5-fluorouracil chemoresistance in colorectal cancer via the Dvl2/Wnt pathway. Oncotarget, 2018, 9, 9963-9974.	1.8	29
46	Secretagogin, a novel neuroendocrine marker, has a distinct expression pattern from chromogranin A. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2006, 449, 402-409.	2.8	28
47	Tumor suppressor gene insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) induces senescence-like growth arrest in colorectal cancer cells. Experimental and Molecular Pathology, 2008, 85, 141-145.	2.1	28
48	p38â€regulated FOXC1 stability is required for colorectal cancer metastasis. Journal of Pathology, 2020, 250, 217-230.	4.5	28
49	Polymorphisms involving gain or loss of CpG sites are significantly enriched in trait-associated SNPs. Oncotarget, 2015, 6, 39995-40004.	1.8	28
50	Integrated analyses of multi-omics reveal global patterns of methylation and hydroxymethylation and screen the tumor suppressive roles of HADHB in colorectal cancer. Clinical Epigenetics, 2018, 10, 30.	4.1	27
51	Interactions between Obesity-Related Copy Number Variants and Dietary Behaviors in Childhood Obesity. Nutrients, 2015, 7, 3054-3066.	4.1	26
52	Association of TET1 expression with colorectal cancer progression. Scandinavian Journal of Gastroenterology, 2017, 52, 312-320.	1.5	26
53	Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N ⁶ â€methyladenosine methylation through methyltransferaseâ€like 14. Cancer Science, 2021, 112, 3243-3254.	3.9	26
54	Diagnostic and Prognostic Value of microRNA-21 in Colorectal Cancer: An Original Study and Individual Participant Data Meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2783-2792.	2.5	24

#	Article	IF	CITATIONS
55	Cancer Stemness, Immune Cells, and Epithelial–Mesenchymal Transition Cooperatively Predict Prognosis in Colorectal Carcinoma. Clinical Colorectal Cancer, 2018, 17, e579-e592.	2.3	24
56	Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Science, 2021, 112, 178-193.	3.9	24
57	Context-Constrained Multiple Instance Learning for Histopathology Image Segmentation. Lecture Notes in Computer Science, 2012, 15, 623-630.	1.3	24
58	S100A8 ⁺ stroma cells predict a good prognosis and inhibit aggressiveness in colorectal carcinoma. OncoImmunology, 2017, 6, e1260213.	4.6	23
59	Bindingâ€Mediated Formation of Ribonucleoprotein Corona for Efficient Delivery and Control of CRISPR/Cas9. Angewandte Chemie - International Edition, 2021, 60, 11104-11109.	13.8	23
60	Insulin-like growth factor binding protein-related protein 1 and cancer. Clinica Chimica Acta, 2014, 431, 23-32.	1.1	21
61	HMGA2 promotes intestinal tumorigenesis by facilitating MDM2â€mediated ubiquitination and degradation of p53. Journal of Pathology, 2018, 246, 508-518.	4.5	20
62	Decreased expression of dual specificity phosphatase 22 in colorectal cancer and its potential prognostic relevance for stage IV CRC patients. Tumor Biology, 2015, 36, 8531-8535.	1.8	17
63	Parallel multiple instance learning for extremely large histopathology image analysis. BMC Bioinformatics, 2017, 18, 360.	2.6	17
64	Decreased expression of insulin-like growth factor binding protein 7 in human colorectal carcinoma is related to DNA methylation. Journal of Cancer Research and Clinical Oncology, 2007, 133, 305-314.	2.5	16
65	Multi-stage metabolomics and genetic analyses identified metabolite biomarkers of metabolic syndrome and their genetic determinants. EBioMedicine, 2021, 74, 103707.	6.1	16
66	IGFBP-rP1, a potential molecule associated with colon cancer differentiation. Molecular Cancer, 2010, 9, 281.	19.2	15
67	Modulation of epithelial-to-mesenchymal cancerous transition by natural products. Fìtoterapìâ, 2015, 106, 247-255.	2.2	15
68	Prognosis Prediction of Colorectal Cancer Using Gene Expression Profiles. Frontiers in Oncology, 2019, 9, 252.	2.8	14
69	Integrated multiâ€omics data analyses for exploring the coâ€occurring and mutually exclusive gene alteration events in colorectal cancer. Human Mutation, 2020, 41, 1588-1599.	2.5	13
70	LYW-6, a novel cryptotanshinone derived STAT3 targeting inhibitor, suppresses colorectal cancer growth and metastasis. Pharmacological Research, 2020, 153, 104661.	7.1	13
71	Circulating cellâ€free high mobility group ATâ€hook 2 mRNA as a detection marker in the serum of colorectal cancer patients. Journal of Clinical Laboratory Analysis, 2018, 32, e22332.	2.1	12
72	RNF43 frameshift mutations contribute to tumourigenesis in right-sided colon cancer. Pathology Research and Practice, 2019, 215, 152453.	2.3	12

#	Article	IF	CITATIONS
73	A genome-wide assessment of rare copy number variants in colorectal cancer. Oncotarget, 2015, 6, 26411-26423.	1.8	11
74	Interaction between IGFBP7 and insulin: a theoretical and experimental study. Scientific Reports, 2016, 6, 19586.	3.3	10
75	Genome-wide methylation and expression profiling identify methylation-associated genes in colorectal cancer. Epigenomics, 2020, 12, 19-36.	2.1	10
76	Gender specific effect of <scp>LIPC</scp> Câ€514T polymorphism on obesity and relationship with plasma lipid levels in Chinese children. Journal of Cellular and Molecular Medicine, 2015, 19, 2296-2306.	3.6	9
77	The H6D genetic variation of GDF15 is associated with genesis, progress and prognosis in colorectal cancer. Pathology Research and Practice, 2015, 211, 845-850.	2.3	9
78	A novel discriminating colorectal cancer model for differentiating normal and tumor tissues. Epigenomics, 2018, 10, 1463-1475.	2.1	9
79	The polymorphism rs671 at ALDH2 associated with serum uric acid levels in Chinese Han males: A genome-wide association study. Gene, 2018, 651, 62-69.	2.2	8
80	Clinicopathological features of phlebosclerotic colitis. Pathology Research and Practice, 2020, 216, 153193.	2.3	8
81	Mutant CDKN2A regulates P16/p14 expression by alternative splicing in renal cell carcinoma metastasis. Pathology Research and Practice, 2021, 223, 153453.	2.3	8
82	Nuclear aldehyde dehydrogenase 1A1 (ALDH1A1) expression is a favorable prognostic indicator in colorectal carcinoma. Pathology Research and Practice, 2016, 212, 791-799.	2.3	7
83	A novel variant associated with HDL-C levels by modifying DACLB expression levels: An annotation-based genome-wide association study. European Journal of Human Genetics, 2018, 26, 838-847.	2.8	7
84	DNA hydroxymethylation of colorectal primary carcinoma and its association with survival. Journal of Surgical Oncology, 2018, 117, 1029-1037.	1.7	6
85	No association between the polymorphisms in CDX2 coding regions and colorectal cancer in Chinese. Molecular and Cellular Biochemistry, 2009, 331, 27-30.	3.1	5
86	Deletions at SLC18A1 increased the risk of CRC and lower SLC18A1 expression associated with poor CRC outcome. Carcinogenesis, 2017, 38, 1057-1062.	2.8	4
87	CD44v6 down-regulation is an independent prognostic factor for poor outcome of colorectal carcinoma. International Journal of Clinical and Experimental Pathology, 2015, 8, 14283-93.	0.5	3
88	Identification of potential functional variants and genes at 18q21.1 associated with the carcinogenesis of colorectal cancer. PLoS Genetics, 2022, 18, e1010050.	3.5	3
89	DHPLC analysis of the matrix metalloproteinase-1 promoter 1G/2G polymorphism that can be easily used to screen large population. Journal of Proteomics, 2005, 63, 222-227.	2.4	2
90	Genetic polymorphisms of 19 autosomal STR loci in 3510 individuals from Han population of Zhejiang province, Southeast China. Forensic Science International, 2020, 306, 110045.	2.2	2

#	Article	IF	CITATIONS
91	A novel variant on chromosome 6p21.1 is associated with the risk of developing colorectal cancer: a two-stage case-control study in Han Chinese. BMC Cancer, 2016, 16, 807.	2.6	1
92	Bindingâ€Mediated Formation of Ribonucleoprotein Corona for Efficient Delivery and Control of CRISPR/Cas9. Angewandte Chemie, 2021, 133, 11204-11209.	2.0	0