Patrick Blader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8760265/publications.pdf Version: 2024-02-01

DATDICK RIADED

#	Article	IF	CITATIONS
1	Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos Genes and Development, 1993, 7, 1436-1446.	5.9	274
2	A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development (Cambridge), 2006, 133, 4619-4630.	2.5	267
3	Notch Activity Levels Control the Balance between Quiescence and Recruitment of Adult Neural Stem Cells. Journal of Neuroscience, 2010, 30, 7961-7974.	3.6	247
4	Cleavage of the BMP-4 Antagonist Chordin by Zebrafish Tolloid. Science, 1997, 278, 1937-1940.	12.6	187
5	Ethanol Impairs Migration of the Prechordal Plate in the Zebrafish Embryo. Developmental Biology, 1998, 201, 185-201.	2.0	164
6	Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. Mechanisms of Development, 2003, 120, 211-218.	1.7	163
7	Asymmetry of the Brain: Development and Implications. Annual Review of Genetics, 2015, 49, 647-672.	7.6	153
8	A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material. Trends in Genetics, 1994, 10, 75-76.	6.7	135
9	Notch activity in the nervous system: to switch or not switch?. Neural Development, 2009, 4, 36.	2.4	107
10	Axial (HNF3β) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter. EMBO Journal, 1997, 16, 3955-3964.	7.8	97
11	Expression and regulation of a netrin homologue in the zebrafish embryo. Mechanisms of Development, 1997, 62, 147-160.	1.7	92
12	<i>oneâ€eyed pinhead</i> is required for development of the ventral midline of the zebrafish (<i>Danio) Tj ETQq</i>	0 0 0 0 rgBT 2.8 rgBT	Qverlock 10
13	Assembly of Trigeminal Sensory Ganglia by Chemokine Signaling. Neuron, 2005, 47, 653-666.	8.1	86
14	Breaking symmetry: The zebrafish as a model for understanding leftâ€right asymmetry in the developing brain. Developmental Neurobiology, 2012, 72, 269-281.	3.0	82
15	Search for enhancers: teleost models in comparative genomic and transgenic analysis ofcisregulatory elements. BioEssays, 2002, 24, 564-572.	2.5	80
16	Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei. Development (Cambridge), 2009, 136, 1549-1557.	2.5	76
17	Zebrafish developmental genetics and central nervous system development. Human Molecular Genetics, 2000, 9, 945-951.	2.9	61

Conserved and acquired features of neurogenin1 regulation. Development (Cambridge), 2004, 131, 5627-5637. 2.5

PATRICK BLADER

#	Article	IF	CITATIONS
19	her3, a zebrafish member of thehairy-E(spl)family, is repressed by Notch signalling. Development (Cambridge), 2004, 131, 2957-2969.	2.5	55
20	Mechano-sensory organ regeneration in adults: The zebrafish lateral line as a model. Molecular and Cellular Neurosciences, 2006, 33, 180-187.	2.2	53
21	Tcf7l2 Is Required for Left-Right Asymmetric Differentiation of Habenular Neurons. Current Biology, 2014, 24, 2217-2227.	3.9	52
22	Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon. Developmental Dynamics, 2007, 236, 1273-1286.	1.8	48
23	Early neurogenesis in the zebrafish embryo. FASEB Journal, 1994, 8, 692-698.	0.5	43
24	Characterization of zebrafish smad1, smad2 and smad5: the amino-terminus of Smad1 and Smad5 is required for specific function in the embryo. Mechanisms of Development, 1999, 88, 73-88.	1.7	43
25	A Floor Plate Enhancer of the Zebrafish netrin1 Gene Requires Cyclops (Nodal) Signalling and the Winged Helix Transcription Factor FoxA2. Developmental Biology, 2002, 252, 1-14.	2.0	42
26	Three Wnt genes expressed in a wide variety of tissues during development of the zebrafish, Danio rerio : developmental and evolutionary perspectives. Development Genes and Evolution, 1996, 206, 3-13.	0.9	36
27	Parapineal specific expression of gfi1 in the zebrafish epithalamus. Gene Expression Patterns, 2004, 4, 53-57.	0.8	36
28	Cell-type heterogeneity in the early zebrafish olfactory epithelium is generated from progenitors within preplacodal ectoderm. ELife, 2018, 7, .	6.0	32
29	Identification of nodal signaling targets by array analysis of induced complex probes. Developmental Dynamics, 2001, 222, 571-580.	1.8	31
30	A cluster of non-redundant Ngn1 binding sites is required for regulation of deltaA expression in zebrafish. Developmental Biology, 2011, 350, 198-207.	2.0	28
31	Mutation in the Î′â€subunit of the nAChR suppresses the muscle defects caused by lack of Dystrophin. Developmental Dynamics, 2005, 234, 1016-1025.	1.8	25
32	Notch resolves mixed neural identities in the zebrafish epiphysis. Development (Cambridge), 2008, 135, 2391-2401.	2.5	25
33	BMP signaling orchestrates photoreceptor specification in the zebrafish pineal gland in collaboration with Notch. Development (Cambridge), 2011, 138, 2293-2302.	2.5	24
34	Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors. PLoS ONE, 2017, 12, e0172947.	2.5	24
35	Chapter 7: Strategies to Perturb Zebrafish Development. Methods in Cell Biology, 1998, 59, 87-115.	1.1	23
36	Partially redundant proneural function reveals the importance of timing during zebrafish olfactory neurogenesis. Development (Cambridge), 2011, 138, 4753-4762.	2.5	22

PATRICK BLADER

#	Article	IF	CITATIONS
37	Pitx2c ensures habenular asymmetry by restricting parapineal cell number. Development (Cambridge), 2014, 141, 1572-1579.	2.5	21
38	Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Research, 2022, 50, 6284-6299.	14.5	21
39	Cyclops-independent floor plate differentiation in zebrafish embryos. Developmental Dynamics, 2003, 226, 59-66.	1.8	19
40	Divergence in regulation of the PEA3 family of ETS transcription factors. Gene Expression Patterns, 2006, 6, 777-782.	0.8	19
41	Casting an eye over cyclopia. Nature, 1998, 395, 112-113.	27.8	18
42	Left/right asymmetric collective migration of parapineal cells is mediated by focal FGF signaling activity in leading cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9812-E9821.	7.1	16
43	Habenular Neurogenesis in Zebrafish Is Regulated by a Hedgehog, Pax6 Proneural Gene Cascade. PLoS ONE, 2016, 11, e0158210.	2.5	16
44	Amniotic fluid peptides predict postnatal kidney survival in developmental kidney disease. Kidney International, 2021, 99, 737-749.	5.2	15
45	Sox1a mediates the ability of the parapineal to impart habenular left-right asymmetry. ELife, 2019, 8, .	6.0	14
46	Interhemispheric asymmetry of olfactory input-dependent neuronal specification in the adult brain. Nature Neuroscience, 2013, 16, 884-888.	14.8	13
47	A Notch-mediated, temporal asymmetry in BMP pathway activation promotes photoreceptor subtype diversification. PLoS Biology, 2019, 17, e2006250.	5.6	12
48	Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. ELife, 2017, 6, .	6.0	11
49	Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes. Methods in Cell Biology, 2016, 134, 33-67.	1.1	9
50	Pitx2c orchestrates embryonic axis extension via mesendodermal cell migration. ELife, 2018, 7, .	6.0	8
51	Functional heterogeneity in the pineal projection neurons of zebrafish. Molecular and Cellular Neurosciences, 2020, 103, 103468.	2.2	7
52	Morphogenesis is transcriptionally coupled to neurogenesis during peripheral olfactory organ development. Development (Cambridge), 2020, 147, .	2.5	6
53	Mapping of the amniotic fluid proteome of fetuses with congenital anomalies of the kidney and urinary tract identifies plastin 3 as a protein involved in glomerular integrity. Journal of Pathology, 2021, 254, 575-588.	4.5	4
54	Notch signaling restricts FGF pathway activation in parapineal cells to promote their collective migration. ELife, 2019, 8, .	6.0	4

#	Article	IF	CITATIONS
55	The low affinity p75 neurotrophin receptor is down-regulated in congenital anomalies of the kidney and the urinary tract: Possible involvement in early nephrogenesis. Biochemical and Biophysical Research Communications, 2020, 533, 786-791.	2.1	3
56	When Bigger Is Better: 3D RNA Profiling of the Developing Head in the Catshark Scyliorhinus canicula. Frontiers in Cell and Developmental Biology, 2021, 9, 744982.	3.7	3
57	Oh, for some simple guidance. Trends in Genetics, 2000, 16, 486.	6.7	0