Flaminia Catteruccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8758373/publications.pdf

Version: 2024-02-01

201674 206112 4,505 57 27 48 citations h-index g-index papers 67 67 67 5266 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Concerning RNA-guided gene drives for the alteration of wild populations. ELife, 2014, 3, .	6.0	653
2	Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science, 2015, 347, 1258524.	12.6	527
3	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
4	Regulating gene drives. Science, 2014, 345, 626-628.	12.6	287
5	Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538, 344-349.	27.8	214
6	Vector biology meets disease control: using basic research to fight vector-borne diseases. Nature Microbiology, 2019, 4, 20-34.	13.3	189
7	Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nature Communications, 2014, 5, 3985.	12.8	142
8	A genome-wide analysis in <i>Anopheles gambiae</i> mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16215-16220.	7.1	133
9	Transglutaminase-Mediated Semen Coagulation Controls Sperm Storage in the Malaria Mosquito. PLoS Biology, 2009, 7, e1000272.	5.6	121
10	Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nature Communications, 2016, 7, 11772.	12.8	121
11	Molecular and cellular components of the mating machinery in <i>Anopheles gambiae</i> females. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19390-19395.	7.1	107
12	Identification of sex-specific transcripts of the Anopheles gambiae doublesex gene. Journal of Experimental Biology, 2005, 208, 3701-3709.	1.7	103
13	Sexual transfer of the steroid hormone 20E induces the postmating switch in <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16353-16358.	7.1	102
14	Spermless males elicit large-scale female responses to mating in the malaria mosquito <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13677-13681.	7.1	101
15	The Interaction between a Sexually Transferred Steroid Hormone and a Female Protein Regulates Oogenesis in the Malaria Mosquito Anopheles gambiae. PLoS Biology, 2013, 11, e1001695.	5.6	98
16	Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission. Nature, 2019, 567, 239-243.	27.8	98
17	The reproductive tracts of two malaria vectors are populated by a core microbiome and by genderand swarm-enriched microbial biomarkers. Scientific Reports, 2016, 6, 24207.	3.3	93
18	Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5854-5859.	7.1	80

#	Article	IF	CITATIONS
19	Mosquito heat seeking is driven by an ancestral cooling receptor. Science, 2020, 367, 681-684.	12.6	79
20	Steroid Hormone Function Controls Non-competitive Plasmodium Development in Anopheles. Cell, 2019, 177, 315-325.e14.	28.9	72
21	Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science, 2015, 347, 985-988.	12.6	68
22	High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions. Malaria Journal, 2012, 11, 302.	2.3	56
23	Disrupting Mosquito Reproduction and Parasite Development for Malaria Control. PLoS Pathogens, 2016, 12, e1006060.	4.7	55
24	Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential. PLoS Pathogens, 2020, 16, e1009131.	4.7	52
25	Function and composition of male accessory gland secretions in <i>Anopheles gambiae</i> : a comparison with other insect vectors of infectious diseases. Pathogens and Global Health, 2012, 106, 82-93.	2.3	50
26	VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature, 2022, 602, 475-480.	27.8	49
27	Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nature Microbiology, 2021, 6, 1575-1582.	13.3	43
28	Heterosis Increases Fertility, Fecundity, and Survival of Laboratory-Produced F1 Hybrid Males of the Malaria Mosquito <i>Anopheles coluzzii</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2693-2709.	1.8	27
29	Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a025593.	6.2	27
30	Plasmodium development in Anopheles: a tale of shared resources. Trends in Parasitology, 2022, 38, 124-135.	3.3	27
31	Molecular evolution of a gene cluster of serine proteases expressed in the Anopheles gambiae female reproductive tract. BMC Evolutionary Biology, 2011, 11, 72.	3.2	21
32	The Anopheles coluzzii microbiome and its interaction with the intracellular parasite Wolbachia. Scientific Reports, 2020, 10, 13847.	3.3	21
33	A comparative analysis of reproductive biology of insect vectors of human disease. Current Opinion in Insect Science, 2015, 10, 142-148.	4.4	19
34	Mosquito microevolution drives Plasmodium falciparum dynamics. Nature Microbiology, 2019, 4, 941-947.	13.3	18
35	Infection of laboratory colonies of Anopheles mosquitoes with Plasmodium vivax from cryopreserved clinical isolates. International Journal for Parasitology, 2016, 46, 679-683.	3.1	17
36	Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Scientific Reports, 2018, 8, 6594.	3.3	17

3

#	Article	IF	CITATIONS
37	Characterization of Anopheles gambiae Transglutaminase 3 (AgTG3) and Its Native Substrate Plugin. Journal of Biological Chemistry, 2013, 288, 4844-4853.	3.4	14
38	Design and assessment of TRAP-CSP fusion antigens as effective malaria vaccines. PLoS ONE, 2020, 15, e0216260.	2.5	13
39	Cuticular hydrocarbons are associated with mating success and insecticide resistance in malaria vectors. Communications Biology, 2021, 4, 911.	4.4	13
40	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection. PLoS Pathogens, 2020, 16, e1008908.	4.7	12
41	Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae. BMC Evolutionary Biology, 2011, 11, 292.	3.2	10
42	Evolution of gene expression levels in the male reproductive organs of <i>Anopheles</i> mosquitoes. Life Science Alliance, 2019, 2, e201800191.	2.8	10
43	Using an antimalarial in mosquitoes overcomes Anopheles and Plasmodium resistance to malaria control strategies. PLoS Pathogens, 2022, 18, e1010609.	4.7	10
44	JNK signaling regulates oviposition in the malaria vector Anopheles gambiae. Scientific Reports, 2020, 10, 14344.	3.3	9
45	A transgenic tool to assess Anopheles mating competitiveness in the field. Parasites and Vectors, 2018, 11, 651.	2.5	6
46	A steroid hormone agonist reduces female fitness in insecticide-resistant Anopheles populations. Insect Biochemistry and Molecular Biology, 2020, 121, 103372.	2.7	6
47	Mating-regulated atrial proteases control reinsemination rates in Anopheles gambiae females. Scientific Reports, 2020, 10, 21974.	3.3	4
48	Malaria-carrying mosquitoes get a leg up on insecticides. Nature, 2020, 577, 319-320.	27.8	3
49	Flaminia Catteruccia – Digging into the Sex Life of Mosquitoes. Trends in Parasitology, 2016, 32, 751-752.	3.3	0
50	Title is missing!. , 2020, 16, e1009131.		0
51	Title is missing!. , 2020, 16, e1009131.		0
52	Title is missing!. , 2020, 16, e1009131.		0
53	Title is missing!. , 2020, 16, e1009131.		0
54	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection., 2020, 16, e1008908.		0

#	Article	IF	CITATIONS
55	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection., 2020, 16, e1008908.		0
56	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection. , 2020, 16 , e 1008908 .		0
57	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection., 2020, 16, e1008908.		O